# Test case : the non-monotonic Sobol g-function
# Only one kernel is provided with default hyperparameter value
n <- 100
X <- data.frame(matrix(runif(8 * n), nrow = n))
x <- sensiHSIC(model = sobol.fun, X, kernelX = "raquad", kernelY = "rbf")
print(x)
# Test case : the Ishigami function
# A list of kernels is given with default hyperparameter value
n <- 100
X <- data.frame(matrix(-pi+2*pi*runif(3 * n), nrow = n))
x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("rbf","matern3","dcov"),
kernelY = "rbf")
print(x)
# A combination of kernels is given and a dummy value is passed for
# the first hyperparameter
x <- sensiHSIC(model = ishigami.fun, X, kernelX = c("ssanova1","matern3","dcov"),
paramX = c(1,2,1), kernelY = "ssanova1")
print(x)
Run the code above in your browser using DataLab