Transformation function of one variable (vector sample)
weightTSA(Y, c, upper = TRUE, type="indicTh", param=1)
The vector sample of the transformed variable
The output vector
The threshold
TRUE for upper threshold and FALSE for lower threshold
The weight function type ("indicTh", "zeroTh", logistic", "exp1side"):
indicTh : indicator-thresholding
zeroTh : zero-thresholding (keeps the variable value above (upper=TRUE case) or below the threshold)
logistic : logistic transformation at the threshold
exp1side : exponential transformation above (upper=TRUE case) or below the threshold (see Raguet and Marrel)
The parameter value for "logistic" and "exp1side" types
B. Iooss
The weight functions depend on a threshold \(c\) and/or a smooth relaxation. These functions are defined as follows
if type = "indicTh": \(w = 1_{Y>c}\) (upper threshold) and \(w = 1_{Y<c}\) (lower threshold),
if type = "zeroTh": \(w = Y 1_{Y>c}\) (upper threshold) and \(w = Y 1_{Y<c}\) (lower threshold),
if type = "logistic": $$w = \left[ 1 + \exp{\left( -param\frac{Y-c}{|c|}\right)}\right]^{-1}$$ (upper threshold) and $$w = \left[ 1 + \exp{\left( -param\frac{c-Y}{|c|}\right)}\right]^{-1}$$ (lower threshold),
if type = "exp1side": $$w = \left[ 1 + \exp{\left( -\frac{\max(c - Y, 0)}{\frac{param}{5} \sigma(Y)}\right)}\right]$$ (upper threshold) and $$w = \left[ 1 + \exp{\left( -\frac{\max(Y - c, 0)}{\frac{param}{5} \sigma(Y)}\right) }\right]$$ (lower threshold), where \(\sigma(Y)\) is an estimation of the standard deviation of Y and \(param = 1\) is a parameter tuning the smoothness.
H. Raguet and A. Marrel, Target and conditional sensitivity analysis with emphasis on dependence measures, Preprint, https://hal.archives-ouvertes.fr/hal-01694129
A. Marrel and V. Chabridon, 2021, Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor, Reliability Engineering & System Safety, 214:107711.
A. Spagnol, Kernel-based sensitivity indices for high-dimensional optimization problems, PhD Thesis, Universite de Lyon, 2020
Spagnol A., Le Riche R., Da Veiga S. (2019), Global sensitivity analysis for optimization with variable selection, SIAM/ASA J. Uncertainty Quantification, 7(2), 417--443.
n <- 100 # sample size
c <- 1.5
Y <- rnorm(n)
Yt <- weightTSA(Y, c)
Run the code above in your browser using DataLab