# Exponential law (log-concave)
PoincareConstant(dfct=dexp,qfct=qexp,pfct=NULL,rate=1,
logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dexp,qfct=NULL,pfct=pexp,rate=1,
optimize.interval=c(0, 15)) # logistic transport approach
# Weibull law (log-concave)
PoincareConstant(dfct=dweibull,qfct=NULL,pfct=pweibull,
optimize.interval=c(0, 15),shape=1,scale=1) # logistic transport approach
# \donttest{
# Triangular law (log-concave)
library(triangle)
PoincareConstant(dfct=dtriangle, qfct=qtriangle, pfct=NULL, a=-1, b=1, c=0,
logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
transport="double_exp", optimize.interval=c(-1,1)) # Double-exp transport
PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
optimize.interval=c(-1,1)) # Logistic transport calculation
# Normal N(0,1) law truncated on [-1.87,+infty]
PoincareConstant(dfct=dnorm,qfct=qnorm,pfct=pnorm,mean=0,sd=1,logconcave=TRUE,
transport="double_exp", truncated=TRUE, min=-1.87, max=999) # log-concave hyp
# Double-exponential transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc,
mean=0, sd=1, truncated=TRUE, min=-1.87, max=999, transport="double_exp",
optimize.interval=c(-1.87,20))
# Logistic transport approach
PoincareConstant(dfct=dnorm.trunc, qfct=qnorm.trunc, pfct=pnorm.trunc,
mean=0, sd=1, truncated=TRUE, min=-1.87, max=999, optimize.interval=c(-1.87,20))
# Gumbel law (log-concave)
library(evd)
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=NULL, loc=0, scale=1,
logconcave=TRUE, transport="double_exp") # log-concave assumption
PoincareConstant(dfct=dgumbel, qfct=NULL, pfct=pgumbel, loc=0, scale=1,
transport="double_exp", optimize.interval=c(-3,20)) # Double-exp transport
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,
optimize.interval=c(-3,20)) # Logistic transport approach
# Truncated Gumbel law (log-concave)
# Double-exponential transport approach
PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,
logconcave=TRUE, transport="double_exp", truncated=TRUE,
min=-0.92, max=3.56) # log-concave assumption
PoincareConstant(dfct=dgumbel.trunc, qfct=NULL, pfct=pgumbel.trunc, loc=0, scale=1,
truncated=TRUE, min=-0.92, max=3.56, transport="double_exp",
optimize.interval=c(-0.92,3.56))
# Logistic transport approach
PoincareConstant(dfct=dgumbel.trunc, qfct=qgumbel.trunc, pfct=pgumbel.trunc,
loc=0, scale=1, truncated=TRUE, min=-0.92, max=3.56,
optimize.interval=c(-0.92,3.56))
# }
Run the code above in your browser using DataLab