Learn R Programming

seqHMM (version 1.2.6)

hmm_mvad: Hidden Markov model for the mvad data

Description

A hidden Markov model (MMM) fitted for the mvad data.

Arguments

Format

A hidden Markov model of class hmm; unrestricted model with six hidden states.

Details

Model was created with the following code:

data("mvad", package = "TraMineR")

mvad_alphabet <- c("employment", "FE", "HE", "joblessness", "school", "training") mvad_labels <- c("employment", "further education", "higher education", "joblessness", "school", "training") mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR") mvad_seq <- seqdef(mvad, 17:86, alphabet = mvad_alphabet, states = mvad_scodes, labels = mvad_labels, xtstep = 6)

attr(mvad_seq, "cpal") <- colorpalette[[6]]

# Starting values for the emission matrix emiss <- matrix( c(0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC 0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE 0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR 0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE 0.75, 0.05, 0.05, 0.05, 0.05, 0.05),# EM nrow = 5, ncol = 6, byrow = TRUE)

# Starting values for the transition matrix trans <- matrix(0.025, 5, 5) diag(trans) <- 0.9

# Starting values for initial state probabilities initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

# Building a hidden Markov model init_hmm_mvad <- build_hmm(observations = mvad_seq, transition_probs = trans, emission_probs = emiss, initial_probs = initial_probs)

set.seed(21) fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 100))) hmm_mvad <- fit_hmm_mvad$model

See Also

Examples of building and fitting HMMs in build_hmm and fit_model; and mvad for more information on the data.

Examples

Run this code
data("hmm_mvad")

# Plotting the model
plot(hmm_mvad)

Run the code above in your browser using DataLab