Learn R Programming

seqHMM (version 1.2.6)

mhmm_biofam: Mixture hidden Markov model for the biofam data

Description

A mixture hidden Markov model (MHMM) fitted for the biofam data.

Arguments

Format

A mixture hidden Markov model of class mhmm: three clusters with left-to-right models including 4, 4, and 6 hidden states. Two covariates, sex and cohort, explaining the cluster membership.

Details

The model was created with the following code:


data("biofam3c")

## Building sequence objects marr_seq <- seqdef(biofam3c$married, start = 15, alphabet = c("single", "married", "divorced")) child_seq <- seqdef(biofam3c$children, start = 15, alphabet = c("childless", "children")) left_seq <- seqdef(biofam3c$left, start = 15, alphabet = c("with parents", "left home"))

## Choosing colors attr(marr_seq, "cpal") <- c("#AB82FF", "#E6AB02", "#E7298A") attr(child_seq, "cpal") <- c("#66C2A5", "#FC8D62") attr(left_seq, "cpal") <- c("#A6CEE3", "#E31A1C")

## Starting values for emission probabilities # Cluster 1 B1_marr <- matrix( c(0.8, 0.1, 0.1, # High probability for single 0.8, 0.1, 0.1, 0.3, 0.6, 0.1, # High probability for married 0.3, 0.3, 0.4), # High probability for divorced nrow = 4, ncol = 3, byrow = TRUE)

B1_child <- matrix( c(0.9, 0.1, # High probability for childless 0.9, 0.1, 0.9, 0.1, 0.9, 0.1), nrow = 4, ncol = 2, byrow = TRUE)

B1_left <- matrix( c(0.9, 0.1, # High probability for living with parents 0.1, 0.9, # High probability for having left home 0.1, 0.9, 0.1, 0.9), nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 2

B2_marr <- matrix( c(0.8, 0.1, 0.1, # High probability for single 0.8, 0.1, 0.1, 0.1, 0.8, 0.1, # High probability for married 0.7, 0.2, 0.1), nrow = 4, ncol = 3, byrow = TRUE)

B2_child <- matrix( c(0.9, 0.1, # High probability for childless 0.9, 0.1, 0.9, 0.1, 0.1, 0.9), nrow = 4, ncol = 2, byrow = TRUE)

B2_left <- matrix( c(0.9, 0.1, # High probability for living with parents 0.1, 0.9, 0.1, 0.9, 0.1, 0.9), nrow = 4, ncol = 2, byrow = TRUE)

# Cluster 3 B3_marr <- matrix( c(0.8, 0.1, 0.1, # High probability for single 0.8, 0.1, 0.1, 0.8, 0.1, 0.1, 0.1, 0.8, 0.1, # High probability for married 0.3, 0.4, 0.3, 0.1, 0.1, 0.8), # High probability for divorced nrow = 6, ncol = 3, byrow = TRUE)

B3_child <- matrix( c(0.9, 0.1, # High probability for childless 0.9, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.1, 0.9), nrow = 6, ncol = 2, byrow = TRUE)

B3_left <- matrix( c(0.9, 0.1, # High probability for living with parents 0.1, 0.9, 0.5, 0.5, 0.5, 0.5, 0.1, 0.9, 0.1, 0.9), nrow = 6, ncol = 2, byrow = TRUE)

# Starting values for transition matrices A1 <- matrix( c(0.80, 0.16, 0.03, 0.01, 0, 0.90, 0.07, 0.03, 0, 0, 0.90, 0.10, 0, 0, 0, 1), nrow = 4, ncol = 4, byrow = TRUE)

A2 <- matrix( c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01, 0, 0.70, 0.10, 0.10, 0.05, 0.05, 0, 0, 0.85, 0.01, 0.10, 0.04, 0, 0, 0, 0.90, 0.05, 0.05, 0, 0, 0, 0, 0.90, 0.10, 0, 0, 0, 0, 0, 1), nrow = 6, ncol = 6, byrow = TRUE)

# Starting values for initial state probabilities initial_probs1 <- c(0.9, 0.07, 0.02, 0.01) initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)

# Birth cohort biofam3c$covariates$cohort <- factor(cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957)), labels = c("1909-1935", "1936-1945", "1946-1957"))

# Build mixture HMM init_mhmm_bf <- build_mhmm( observations = list(marr_seq, child_seq, left_seq), initial_probs = list(initial_probs1, initial_probs1, initial_probs2), transition_probs = list(A1, A1, A2), emission_probs = list(list(B1_marr, B1_child, B1_left), list(B2_marr, B2_child, B2_left), list(B3_marr, B3_child, B3_left)), formula = ~sex + cohort, data = biofam3c$covariates, channel_names = c("Marriage", "Parenthood", "Residence"))

# Fitting the model mhmm_biofam <- fit_model(init_mhmm_bf)$model

See Also

Examples of building and fitting MHMMs in build_mhmm and fit_model; and biofam for the original data and biofam3c for the three-channel version used in this model.

Examples

Run this code
data("mhmm_biofam")

# use conditional_se = FALSE for more accurate standard errors
# (these are considerebly slower to compute)
summary(mhmm_biofam$model)

if (interactive()) {
  # Plotting the model for each cluster (change with Enter)
  plot(mhmm_biofam)
}

Run the code above in your browser using DataLab