library(dplyr)
nc = st_read(system.file("shape/nc.shp", package="sf"))
nc %>% filter(AREA > .1) %>% plot()
# plot 10 smallest counties in grey:
st_geometry(nc) %>% plot()
nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area")
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc %>% group_by(area_cl) %>% class()
nc2 <- nc %>% mutate(area10 = AREA/10)
nc %>% transmute(AREA = AREA/10, geometry = geometry) %>% class()
nc %>% transmute(AREA = AREA/10) %>% class()
nc %>% select(SID74, SID79) %>% names()
nc %>% select(SID74, SID79, geometry) %>% names()
nc %>% select(SID74, SID79) %>% class()
nc %>% select(SID74, SID79, geometry) %>% class()
nc2 <- nc %>% rename(area = AREA)
nc %>% slice(1:2)
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc.g <- nc %>% group_by(area_cl)
nc.g %>% summarise(mean(AREA))
nc.g %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))
nc %>% as.data.frame %>% summarise(mean(AREA))
nc[c(1:100, 1:10), ] %>% distinct() %>% nrow()
library(tidyr)
nc %>% select(SID74, SID79) %>% gather("VAR", "SID", -geometry) %>% summary()
library(tidyr)
nc$row = 1:100 # needed for spread to work
nc %>% select(SID74, SID79, geometry, row) %>%
gather("VAR", "SID", -geometry, -row) %>%
spread(VAR, SID) %>% head()
storms.sf = st_as_sf(storms, coords = c("long", "lat"), crs = 4326)
x <- storms.sf %>% group_by(name, year) %>% nest
trs = lapply(x$data, function(tr) st_cast(st_combine(tr), "LINESTRING")[[1]]) %>%
st_sfc(crs = 4326)
trs.sf = st_sf(x[,1:2], trs)
plot(trs.sf["year"], axes = TRUE)
Run the code above in your browser using DataLab