Usage
fit.variogram(model="exponential", v.object, nugget, sill, range, slope, ...)
fit.exponential(v.object, c0, ce, ae, type='c', iterations=10, tolerance=1e-06, echo=FALSE, plot.it=FALSE, weighted=TRUE)
fit.gaussian(v.object, c0, cg, ag, type='c', iterations=10, tolerance=1e-06, echo=FALSE, plot.it=FALSE, weighted=TRUE)
fit.spherical(v.object, c0, cs, as, type='c', iterations=10, tolerance=1e-06, echo=FALSE, plot.it=FALSE, weighted=TRUE, delta=0.1, verbose=TRUE)
fit.wave(v.object, c0, cw, aw, type='c', iterations=10, tolerance=1e-06, echo=FALSE, plot.it=FALSE, weighted=TRUE)
fit.linear(v.object, type='c', plot.it=FALSE,iterations=1, c0=0, cl=1)
Arguments
model
only available for fit.variogram
, switches what kind
of model should be fitted ("exponential", "wave", "gaussian",
"spherical", "linear"
).
v.object
a variogram object generated by est.variogram()
nugget, sill, range, slope
only available for fit.variogram
,
initial estimates for specified variogram model (slope
only for
fit.linear
)
c0
initial estimate for nugget effect, valid for all variogram
types, partial sill (cX
) and (asymptotical) range (aX
)
as follows:
ce, ae
initial estimates for the exponential variogram model
cg, ag
initial estimates for the gaussian variogram model
cs, as
initial estimates for the sperical variogram model
cw, aw
initial estimates for the periodical variogram model
cl
initial estimates for the linear variogram model (slope)
type
one of 'c'
(classic), 'r'
(robust), 'm'
(median). Indicates to which type of empirical variogram estimate the model is
to be fit.
iterations
the number of iterations of the fitting procedure to execute.
tolerance
the tolerance used to determine if model convergence has been achieved.
delta
initial stepsize (relative) for pseudo Newton approximation, applies only to fit.spherical
verbose
if TRUE, be verbose (show iteration for spherical model fit).
plot.it
if TRUE, the variogram estimate will be plotted each iteration.
weighted
if TRUE, the fit will be done using weighted least squares,
where the weightes are given in Cressie (1991, p. 99)
...
only fit.variogram
: additional parameters to hand
through to specific model fit functions