# Subset example data
data(ExampleDb, package="alakazam")
db <- ExampleDb[1:10, ]
# Calculate mutation frequency over the entire sequence
db_obs <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
frequency=TRUE,
nproc=1)
# Count of V-region mutations split by FWR and CDR
# With mutations only considered replacement if charge changes
db_obs <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=IMGT_V,
mutationDefinition=CHARGE_MUTATIONS,
nproc=1)
# Count of VDJ-region mutations, split by FWR and CDR
db_obs <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=IMGT_VDJ,
nproc=1)
# Extend data with lineage information
data(ExampleTrees, package="alakazam")
graph <- ExampleTrees[[17]]
clone <- alakazam::makeChangeoClone(subset(ExampleDb, clone_id == graph$clone))
gdf <- makeGraphDf(graph, clone)
# Count of mutations between observed sequence and immediate ancenstor
db_obs <- observedMutations(gdf, sequenceColumn="sequence",
germlineColumn="parent_sequence",
regionDefinition=IMGT_VDJ,
nproc=1)
Run the code above in your browser using DataLab