Learn R Programming

shipunov (version 1.0)

Jclust: Simple bootstrap and jackknife clustering

Description

Simple bootstrap and jackknife clustering

Usage

Jclust(data, n.cl, iter=100, method.d="manhattan", method.c="ward.D", bootstrap=TRUE)
# S3 method for Jclust
print(x, ...)
# S3 method for Jclust
plot(x, main="", xlab="", sub=NULL, rect.lty=3, rect.col=1, ...)

Arguments

data

Data

n.cl

Number of desired clusters

iter

Number of iterations

method.d

Distance method

method.c

Hierarchical clustering method

bootstrap

Bootstrap or jacknife?

x

Object of the class 'Jclust'

rect.lty

Line type for the rectangles

rect.col

Color of rectangles

main

Plot title

xlab

Horizontal axis label

sub

Horizontal axis sub-label

...

Additional arguments to the 'print()' or 'plot.hclust()'

Details

Simple bootstrap and jackknife clustering, requires the desired number of clusters.

This is how you can boostrap all reliable cluster numbers:

'for (i in 2:(nrow(t(mo)) - 1)) print(J.Clust(t(mo), i, iter=1000, boot=TRUE))'

Alternatives: 'pvc::pvc()'; 'fpc::clusterboot()'; 'ClassDiscovery::BootstrapClusterTest()'

Examples

Run this code
# NOT RUN {
mo <- read.table("http://ashipunov.info/shipunov/open/moldino.txt", h=TRUE, sep="\t", row.names=1)
(mo.j <- Jclust(t(mo), 3, iter=1000))
plot(mo.j)
# }

Run the code above in your browser using DataLab