powered by
Simple bootstrap and jackknife clustering
Jclust(data, n.cl, iter=100, method.d="manhattan", method.c="ward.D", bootstrap=TRUE) # S3 method for Jclust print(x, ...) # S3 method for Jclust plot(x, main="", xlab="", sub=NULL, rect.lty=3, rect.col=1, ...)
Data
Number of desired clusters
Number of iterations
Distance method
Hierarchical clustering method
Bootstrap or jacknife?
Object of the class 'Jclust'
Line type for the rectangles
Color of rectangles
Plot title
Horizontal axis label
Horizontal axis sub-label
Additional arguments to the 'print()' or 'plot.hclust()'
Simple bootstrap and jackknife clustering, requires the desired number of clusters.
This is how you can boostrap all reliable cluster numbers:
'for (i in 2:(nrow(t(mo)) - 1)) print(J.Clust(t(mo), i, iter=1000, boot=TRUE))'
Alternatives: 'pvc::pvc()'; 'fpc::clusterboot()'; 'ClassDiscovery::BootstrapClusterTest()'
# NOT RUN { mo <- read.table("http://ashipunov.info/shipunov/open/moldino.txt", h=TRUE, sep="\t", row.names=1) (mo.j <- Jclust(t(mo), 3, iter=1000)) plot(mo.j) # }
Run the code above in your browser using DataLab