Learn R Programming

shipunov (version 1.17.1)

Gen.cl.data: Generates datasets for clustering

Description

Imitation of the Python sklearn.datasets functions.

Usage

Gen.cl.data(type=c("blobs", "moons", "circles"), N=100, noise=NULL,
 shuffle=TRUE, bdim=2, bcenters=3, bnoise=1, bbox=c(-10, 10), cfactor=0.8)

Arguments

type

'blobs' are Gaussian blobs; 'moons' are two interleaving half-circles; 'circles' are two embedded circles

N

Number of data points

shuffle

Whether to randomize the output

noise

Standard deviation of Gaussian noise applied to point positions

bdim

Dimensionality of 'blobs' dataset

bcenters

Number of 'blobs' centers

bnoise

Standard deviation of 'blobs' Gaussian noise: vector of length one or length equal to the number of centers

bbox

The bounding box within which blobs centers will be created

cfactor

Scale factor between 'circles' (should be > 0 and < 1)

Author

Alexey Shipunov

Details

Algorihms were taken partly from Python 'scikit-learn' and from Github 'elbamos/clusteringdatasets'.

Examples

Run this code
scikit.palette <- c("#377EB8", "#FF7F00", "#4DAF4A", "#F781BF", "#A65628", "#984EA3",
"#999999", "#E41A1C", "#DEDE00", "#000000")
palette(scikit.palette)
n.samples <- 500

## data
set.seed(21)
no.structure <- list(samples=cbind(runif(n.samples), runif(n.samples)),
 labels=rep(1, n.samples))
noisy.circles <- Gen.cl.data(type="circles", N=n.samples, cfactor=0.5, noise=0.05)
noisy.moons <- Gen.cl.data(type="moons", N=n.samples, noise=0.05)
blobs <- Gen.cl.data(type="blobs", N=n.samples, noise=1)
## anisotropically distributed data
aniso <- Gen.cl.data(type="blobs", N=n.samples)
aniso$samples <- aniso$samples %*% rbind(c(0.6, -0.6), c(-0.4, 0.8))
## blobs with varied variances
varied <- Gen.cl.data(type="blobs", N=n.samples, bnoise=c(1, 2.5, 0.5))
set.seed(NULL)

## single example
plot(aniso$samples, col=aniso$labels, pch=19)

## all data objects example
## old.X11.options <- X11.options(width=6, height=6) # to make square cells
oldpar <- par(mfrow=c(2, 3), mar=c(1, 1, 3, 1))
for (n in c("noisy.circles", "noisy.moons", "no.structure",
 "blobs", "aniso", "varied")) {
 plot(get(n)$samples, col=get(n)$labels, pch=19, main=n, xlab="", ylab="",
 xaxt="n", yaxt="n")
}
par(oldpar)
## X11.options <- old.X11.options

# \donttest{
## comparison of clustering techniques example
## old.X11.options <- X11.options(width=10, height=6)  # to make square cells
oldpar <- par(mfrow=c(6, 10), mar=rep(0, 4), xaxt="n", yaxt="n")
COUNT <- 1
for (n in c("noisy.circles", "noisy.moons", "no.structure", "blobs", "aniso", "varied")) {
 K <- 3
 if (n %in% c("noisy.circles", "noisy.moons")) K <- 2
 TITLE <- function(x) if (COUNT==1) { legend("topleft", legend=x, cex=1.25, bty="n") }
##
 newlabels <- cutree(hclust(dist(get(n)$samples), method="ward.D2"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("Ward")
##
 newlabels <- cutree(hclust(dist(get(n)$samples), method="average"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("UPGMA")
##
 newlabels <- kmeans(round(get(n)$samples, 5), centers=K)$cluster
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("K-means")
##
 newlabels <- cutree(as.hclust(cluster::diana(dist(get(n)$samples))), k=K) # slow
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("DIANA")
##
 nn <- cluster::fanny(get(n)$samples, k=K) # a bit slow
 dunn <- apply(nn$membership, 1, function(.x) (sum(.x^2) - 1/K) / (1 - 1/K))
 fuzzy <- dunn < 0.05
 plot(get(n)$samples[!fuzzy, ], col=nn$clustering[!fuzzy], pch=19)
 points(get(n)$samples[fuzzy, ], col="black", pch=1)
 TITLE("FANNY")
##
 newlabels <- kernlab::specc(get(n)$samples, centers=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("spectral")
##
 nn <- apcluster::apclusterK(apcluster::negDistMat(), get(n)$samples, K=K) # very slow
 newlabes <- apply(sapply(nn@clusters,
  function(.y) 1:nrow(get(n)$samples) %in% .y), 1, which)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("AP") # affinity propagation
##
 ## eps values taken out of scikit and 'dbscan::kNNdistplot() "knee"', 'minPts' default
 EPS <- c(noisy.circles=0.3, noisy.moons=0.3, no.structure=0.3, blobs=1,
  aniso=0.5, varied=1)
 nn <- dbscan::dbscan(get(n)$samples, eps=EPS[n])
 outliers <- nn$cluster == 0
 plot(get(n)$samples[!outliers, ], col=nn$cluster[!outliers], pch=19)
 points(get(n)$samples[outliers, ], col="black", pch=1)
 TITLE("DBSCAN")
##
 newlabels <- meanShiftR::meanShift(get(n)$samples, nNeighbors=10)$assignment
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("mean-shift")
##
 library(mclust)
 newlabels <- Mclust(get(n)$samples)$classification
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("Gaussian")
 COUNT <- COUNT + 1
}
par(oldpar)
## X11.options <- old.X11.options
# }

# \donttest{
## comparison of linkages example
## old.X11.options <- X11.options(width=8, height=6) # to make square cells
oldpar <- par(mfrow=c(6, 8), mar=rep(0, 4), xaxt="n", yaxt="n")
COUNT <- 1
for (n in c("noisy.circles", "noisy.moons", "no.structure", "blobs", "aniso", "varied")) {
 K <- 3 ; if (n %in% c("noisy.circles", "noisy.moons")) K <- 2
 TITLE <- function(x) if (COUNT==1) { legend("topleft", legend=x, cex=1.25, bty="n") }
 newlabels <- cutree(hclust(dist(get(n)$samples), method="ward.D2"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("Ward orig")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="ward.D"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("Ward")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="average"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("UPGMA")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="single"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("single")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="complete"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("complete")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="mcquitty"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("WPGMA")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="median"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("WPGMC")
 newlabels <- cutree(hclust(dist(get(n)$samples), method="centroid"), k=K)
 plot(get(n)$samples, col=newlabels, pch=19)
 TITLE("UPGMC")
 COUNT <- COUNT + 1
}
par(oldpar)
## X11.options <- old.X11.options
# }
palette("default")

Run the code above in your browser using DataLab