Learn R Programming

shock (version 1.0)

networkInferenceGlassoBIC: Network inference using the glasso algorithm

Description

This function performs network inference using the glasso algorithm for several regularization parameters and selects a network based on the BIC of the model.

Usage

networkInferenceGlassoBIC(dataNet, nb.rho = 100)

Arguments

dataNet
matrix of data
nb.rho
number of regularization parameters to test in the glasso algorithm

Value

  • Aselected adjacency matrix based on BIC
  • Thetaselected precision matrix based on BIC
  • Sigmaselected covariance matrix based on BIC
  • penaltieslistlist of regularization parameters
  • pathAlist of adjacency matrices for each regularization parameter
  • pathThetalist of precision matrices for each regularization parameter
  • pathSigmalist of covariance matrices for each regularization parameter
  • pathBIClist of BIC values for each regularization parameter

References

https://cran.r-project.org/web/packages/glasso/glasso.pdf

Examples

Run this code
## load data to test 
data(dataTest)

## perform network inference 
resNet <- networkInferenceGlassoBIC(dataTest)

Run the code above in your browser using DataLab