Learn R Programming

siggenes (version 1.46.0)

chisq.ebam: EBAM Analysis for Categorical Data

Description

Generates the required statistics for an Empirical Bayes Analysis of Microarrays (EBAM) of categorical data such as SNP data. Should not be called directly, but via ebam(..., method = chisq.ebam). This function replaces cat.ebam.

Usage

chisq.ebam(data, cl, approx = NULL, B = 100, n.split = 1, check.for.NN = FALSE, lev = NULL, B.more = 0.1, B.max = 50000, n.subset = 10, fast = FALSE, n.interval = NULL, df.ratio = 3, df.dens = NULL, knots.mode = NULL, type.nclass = "wand", rand = NA)

Arguments

data
a matrix, data frame, or list. If a matrix or data frame, then each row must correspond to a variable (e.g., a SNP), and each column to a sample (i.e.\ an observation). If the number of observations is huge it is better to specify data as a list consisting of matrices, where each matrix represents one group and summarizes how many observations in this group show which level at which variable. These matrices can be generated using the function rowTables from the package scrime. For details on how to specify this list, see the examples section on this man page, and the help for rowChisqMultiClass in the package scrime.
cl
a numeric vector of length ncol(data) indicating to which class a sample belongs. Must consist of the integers between 1 and $c$, where $c$ is the number of different groups. Needs only to be specified if data is a matrix or a data frame.
approx
should the null distribution be approximated by a $ChiSquare$-distribution? Currently only available if data is a matrix or data frame. If not specified, approx = FALSE is used, and the null distribution is estimated by employing a permutation method.
B
the number of permutations used in the estimation of the null distribution, and hence, in the computation of the expected $z$-values.
n.split
number of chunks in which the variables are splitted in the computation of the values of the test statistic. Currently, only available if approx = TRUE and data is a matrix or data frame. By default, the test scores of all variables are calculated simultaneously. If the number of variables or observations is large, setting n.split to a larger value than 1 can help to avoid memory problems.
check.for.NN
if TRUE, it will be checked if any of the genotypes is equal to "NN". Can be very time-consuming when the data set is high-dimensional.
lev
numeric or character vector specifying the codings of the levels of the variables/SNPs. Can only be specified if data is a matrix or a data frame. Must only be specified if the variables are not coded by the integers between 1 and the number of levels. Can also be a list. In this case, each element of this list must be a numeric or character vector specifying the codings, where all elements must have the same length.
B.more
a numeric value. If the number of all possible permutations is smaller than or equal to (1+B.more)*B, full permutation will be done. Otherwise, B permutations are used.
B.max
a numeric value. If the number of all possible permutations is smaller than or equal to B.max, B randomly selected permutations will be used in the computation of the null distribution. Otherwise, B random draws of the group labels are used.
n.subset
a numeric value indicating in how many subsets the B permutations are divided when computing the permuted $z$-values. Please note that the meaning of n.subset differs between the SAM and the EBAM functions.
fast
if FALSE the exact number of permuted test scores that are more extreme than a particular observed test score is computed for each of the variables/SNPs. If TRUE, a crude estimate of this number is used.
n.interval
the number of intervals used in the logistic regression with repeated observations for estimating the ratio $f0/f$ (if approx = FALSE), or in the Poisson regression used to estimate the density of the observed $z$-values (if approx = TRUE). If NULL, n.interval is set to 139 if approx = FALSE, and estimated by the method specified by type.nclass if approx = TRUE.
df.ratio
integer specifying the degrees of freedom of the natural cubic spline used in the logistic regression with repeated observations. Ignored if approx = TRUE.
df.dens
integer specifying the degrees of freedom of the natural cubic spline used in the Poisson regression to estimate the density of the observed $z$-values. Ignored if approx = FALSE. If NULL, df.dens is set to 3 if the degrees of freedom of the appromimated null distribution, i.e.\ the $ChiSquare$-distribution, are less than or equal to 2, and otherwise df.dens is set to 5.
knots.mode
if TRUE the df.dens - 1 knots are centered around the mode and not the median of the density when fitting the Poisson regression model. Ignored if approx = FALSE. If not specified, knots.mode is set to TRUE if the degrees of freedom of the approximated null distribution, i.e.\ tht $ChiSquare$-distribution, are larger than or equal to 3, and otherwise knots.mode is set to FALSE. For details on this density estimation, see denspr.
type.nclass
character string specifying the procedure used to compute the number of cells of the histogram. Ignored if approx = FALSE or n.interval is specified. Can be either "wand" (default), "scott", or "FD". For details, see denspr.
rand
numeric value. If specified, i.e. not NA, the random number generator will be set into a reproducible state.

Value

A list containing statistics required by ebam.

Warning

This procedure will only work correctly if all SNPs/variables have the same number of levels/categories.

Details

For each variable, Pearson's Chi-Square statistic is computed to test if the distribution of the variable differs between several groups. Since only one null distribution is estimated for all variables as proposed in the original EBAM application of Efron et al. (2001), all variables must have the same number of levels/categories.

References

Efron, B., Tibshirani, R., Storey, J.D., and Tusher, V. (2001). Empirical Bayes Analysis of a Microarray Experiment, JASA, 96, 1151-1160. Schwender, H. and Ickstadt, K. (2008). Empirical Bayes Analysis of Single Nucleotide Polymorphisms. BMC Bioinformatics, 9, 144. Schwender, H., Krause, A., and Ickstadt, K. (2003). Comparison of the Empirical Bayes and the Significance Analysis of Microarrays. Technical Report, SFB 475, University of Dortmund, Germany.

See Also

EBAM-class,ebam, chisq.stat