# NOT RUN {
accrej(n = 20, seed = 8675309, plotDelay = 0)
# }
# NOT RUN {
accrej(n = 10, seed = 8675309, plotDelay = 0.1)
accrej(n = 10, seed = 8675309, plotDelay = -1)
# Piecewise-constant majorizing function
m <- function(x) {
if (x < 0.3) 1.0
else if (x < 0.85) 2.5
else 1.5
}
accrej(n = 100, seed = 8675309, majorizingFcn = m, plotDelay = 0)
# Piecewise-constant majorizing function as data frame
m <- data.frame(
x = c(0.0, 0.3, 0.85, 1.0),
y = c(1.0, 1.0, 2.5, 1.5))
accrej(n = 100, seed = 8675309, majorizingFcn = m,
majorizingFcnType = "pwc", plotDelay = 0)
# Piecewise-linear majorizing function as data frame
m <- data.frame(
x = c(0.0, 0.1, 0.3, 0.5, 0.7, 1.0),
y = c(0.0, 0.5, 1.1, 2.2, 1.9, 1.0))
accrej(n = 100, seed = 8675309, majorizingFcn = m,
majorizingFcnType = "pwl", plotDelay = 0)
# invalid majorizing function; should give warning
accrej(n = 20, majorizingFcn = function(x) dbeta(x, 1, 3), plotDelay = 0)
# }
# NOT RUN {
# Piecewise-linear majorizing function with power-distribution density function
m <- data.frame(x = c(0, 1, 2), y = c(0, 0.375, 1.5))
samples <- accrej(n = 100, pdf = function(x) (3 / 8) * x ^ 2, support = c(0,2),
majorizingFcn = m, majorizingFcnType = "pwl", plotDelay = 0)
# }
Run the code above in your browser using DataLab