Estimation function for Shannon's index. Internal use in
WYht
. Calculates Shannon-Wiener index with bias correction
$$\widehat{HBC}_{ij} = \hat{H}_{ij} + (S_{ij} -1)/(2N_{ij}) -
(1-\sum_{s=1}^{S}(1/\hat{p}_{ijs}))/(12N_{ij}^2) -
\sum_{s=1}^{S}((1/\hat{p}_{ijs})-(1/(\hat{p}_{ijs}^2)))/(12N_{ij}^3);$$
$$\hat{H}_{ij}=(-1)\sum_{s=1}^{S}(\hat{p}_{ijs} log(\hat{p}_{ijs}))$$
\(i=1,...,k;j=1,...,n;s=1,...,S;\)
\(S_j = \) Number of observed species in replicate \(j\);
\(N_j= \) Number of observed individuals in replicate \(j\)
for every row in a \(n \times p\) matrix.
estShannonWY(x)
Shannon-Wiener index with bias correction
Vector of \(p\) numerical species counts.