#---------------------------------------------------------------------------------------
# EXAMPLE 1A: Define some Bernoulli nodes, survival outcome Y and put it together in a
# DAG object
#---------------------------------------------------------------------------------------
W1node <- node(name = "W1", distr = "rbern",
prob = plogis(-0.5), order = 1)
W2node <- node(name = "W2", distr = "rbern",
prob = plogis(-0.5 + 0.5 * W1), order = 2)
Anode <- node(name = "A", distr = "rbern",
prob = plogis(-0.5 - 0.3 * W1 - 0.3 * W2), order = 3)
Ynode <- node(name = "Y", distr = "rbern",
prob = plogis(-0.1 + 1.2 * A + 0.3 * W1 + 0.3 * W2), order = 4)
D1Aset <- set.DAG(c(W1node,W2node,Anode,Ynode))
#---------------------------------------------------------------------------------------
# EXAMPLE 1B: Same as 1A using +node interface and no order argument
#---------------------------------------------------------------------------------------
D1B <- DAG.empty()
D1B <- D1B +
node(name = "W1", distr = "rbern", prob = plogis(-0.5)) +
node(name = "W2", distr = "rbern", prob = plogis(-0.5 + 0.5 * W1)) +
node(name = "A", distr = "rbern", prob = plogis(-0.5 - 0.3 * W1 - 0.3 * W2)) +
node(name = "Y", distr = "rbern", prob = plogis(-0.1 + 1.2 * A + 0.3 * W1 + 0.3 * W2))
D1Bset <- set.DAG(D1B)
#---------------------------------------------------------------------------------------
# EXAMPLE 1C: Same as 1A and 1B using add.nodes interface and no order argument
#---------------------------------------------------------------------------------------
D1C <- DAG.empty()
D1C <- add.nodes(D1C, node(name = "W1", distr = "rbern", prob = plogis(-0.5)))
D1C <- add.nodes(D1C, node(name = "W2", distr = "rbern",
prob = plogis(-0.5 + 0.5 * W1)))
D1C <- add.nodes(D1C, node(name = "A", distr = "rbern",
prob = plogis(-0.5 - 0.3 * W1 - 0.3 * W2)))
D1C <- add.nodes(D1C, node(name = "Y", distr = "rbern",
prob = plogis(-0.1 + 1.2 * A + 0.3 * W1 + 0.3 * W2)))
D1C <- set.DAG(D1C)
#---------------------------------------------------------------------------------------
# EXAMPLE 1D: Add a uniformly distributed node and redefine outcome Y as categorical
#---------------------------------------------------------------------------------------
D_unif <- DAG.empty()
D_unif <- D_unif +
node("W1", distr = "rbern", prob = plogis(-0.5)) +
node("W2", distr = "rbern", prob = plogis(-0.5 + 0.5 * W1)) +
node("W3", distr = "runif", min = plogis(-0.5 + 0.7 * W1 + 0.3 * W2), max = 10) +
node("An", distr = "rbern", prob = plogis(-0.5 - 0.3 * W1 - 0.3 * W2 - 0.2 * sin(W3)))
# Categorical syntax 1 (probabilities as values):
D_cat_1 <- D_unif + node("Y", distr = "rcat.b1", probs = {0.3; 0.4})
D_cat_1 <- set.DAG(D_cat_1)
# Categorical syntax 2 (probabilities as formulas):
D_cat_2 <- D_unif +
node("Y", distr = "rcat.b1",
probs={plogis(-0.1 + 1.2 * An + 0.3 * W1 + 0.3 * W2 + 0.2 * cos(W3));
plogis(-0.5 + 0.7 * W1)})
D_cat_2 <- set.DAG(D_cat_2)
#---------------------------------------------------------------------------------------
# EXAMPLE 2A: Define Bernoulli nodes using R rbinom() function, defining prob argument
# for L2 as a function of node L1
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D +
node("L1", t = 0, distr = "rbinom", prob = 0.05, size = 1) +
node("L2", t = 0, distr = "rbinom", prob = ifelse(L1[0] == 1, 0.5, 0.1), size = 1)
Dset <- set.DAG(D)
#---------------------------------------------------------------------------------------
# EXAMPLE 2B: Equivalent to 2A, passing argument size to rbinom inside a named list
# params
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D +
node("L1", t = 0, distr = "rbinom", prob = 0.05, params = list(size = 1)) +
node("L2", t = 0, distr = "rbinom",
prob = ifelse(L1[0] == 1,0.5,0.1), params = list(size = 1))
Dset <- set.DAG(D)
#---------------------------------------------------------------------------------------
# EXAMPLE 2C: Equivalent to 2A and 2B, define Bernoulli nodes using a wrapper "rbern"
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D +
node("L1", t = 0, distr = "rbern", prob = 0.05) +
node("L2", t = 0, distr = "rbern", prob = ifelse(L1[0] == 1, 0.5, 0.1))
Dset <- set.DAG(D)
#---------------------------------------------------------------------------------------
# EXAMPLE 3: Define node with normal distribution using rnorm() R function
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D + node("L2", t = 0, distr = "rnorm", mean = 10, sd = 5)
Dset <- set.DAG(D)
#---------------------------------------------------------------------------------------
# EXAMPLE 4: Define 34 Bernoulli nodes, or 2 Bernoulli nodes over 17 time points,
#---------------------------------------------------------------------------------------
t_end <- 16
D <- DAG.empty()
D <- D +
node("L2", t = 0:t_end, distr = "rbinom",
prob = ifelse(t == t_end, 0.5, 0.1), size = 1) +
node("L1", t = 0:t_end, distr = "rbinom",
prob = ifelse(L2[0] == 1, 0.5, 0.1), size = 1)
Dset <- set.DAG(D)
sim(Dset, n=10)
#---------------------------------------------------------------------------------------
# EXAMPLE 5: Defining new distribution function 'rbern', defining and passing a custom
# vectorized node function 'customfun'
#---------------------------------------------------------------------------------------
rbern <- function(n, prob) { # defining a bernoulli wrapper based on R rbinom function
rbinom(n = n, prob = prob, size = 1)
}
customfun <- function(arg, lambda) {
res <- ifelse(arg == 1, lambda, 0.1)
res
}
D <- DAG.empty()
D <- D +
node("W1", distr = "rbern", prob = 0.05) +
node("W2", distr = "rbern", prob = customfun(W1, 0.5)) +
node("W3", distr = "rbern", prob = ifelse(W1 == 1, 0.5, 0.1))
D1d <- set.DAG(D, vecfun = c("customfun"))
sim(D1d, n = 10, rndseed = 1)
#---------------------------------------------------------------------------------------
# EXAMPLE 6: Defining latent variables I and U.Y (will be hidden from simulated data)
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D +
node("I",
distr = "rcat.b1",
probs = c(0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1)) +
node("W1",
distr = "rnorm",
mean = ifelse(I == 1, 0, ifelse(I == 2, 3, 10)) + 0.6 * I,
sd = 1) +
node("W2",
distr = "runif",
min = 0.025*I, max = 0.7*I) +
node("W3",
distr = "rbern",
prob = plogis(-0.5 + 0.7*W1 + 0.3*W2 - 0.2*I)) +
node("A",
distr = "rbern",
prob = plogis(+4.2 - 0.5*W1 + 0.2*W2/2 + 0.2*W3)) +
node("U.Y", distr = "rnorm", mean = 0, sd = 1) +
node("Y",
distr = "rconst",
const = -0.5 + 1.2*A + 0.1*W1 + 0.3*W2 + 0.2*W3 + 0.2*I + U.Y)
Dset1 <- set.DAG(D, latent.v = c("I", "U.Y"))
sim(Dset1, n = 10, rndseed = 1)
#---------------------------------------------------------------------------------------
# EXAMPLE 7: Multivariate random variables
#---------------------------------------------------------------------------------------
if (requireNamespace("mvtnorm", quietly = TRUE)) {
D <- DAG.empty()
# 2 dimensional normal (uncorrelated), using rmvnorm function from rmvnorm package:
D <- D +
node(c("X1","X2"), distr = "mvtnorm::rmvnorm",
asis.params = list(mean = "c(0,1)")) +
# Can define a degenerate (rconst) multivariate node:
node(c("X1.copy", "X2.copy"), distr = "rconst", const = c(X1, X2))
Dset1 <- set.DAG(D, verbose = TRUE)
sim(Dset1, n = 10)
}
# On the other hand this syntax wont work,
# since simcausal will parse c(0,1) into a two column matrix:
if (FALSE) {
D <- DAG.empty()
D <- D + node(c("X1","X2"), distr = "mvtnorm::rmvnorm", mean = c(0,1))
Dset1 <- set.DAG(D, verbose = TRUE)
}
if (requireNamespace("mvtnorm", quietly = TRUE)) {
D <- DAG.empty()
# Bivariate normal (correlation coef 0.75):
D <- D +
node(c("X1","X2"), distr = "mvtnorm::rmvnorm",
asis.params = list(mean = "c(0,1)",
sigma = "matrix(c(1,0.75,0.75,1), ncol=2)")) +
# Can use any component of such multivariate nodes when defining new nodes:
node("A", distr = "rconst", const = 1 - X1)
Dset2 <- set.DAG(D, verbose = TRUE)
sim(Dset2, n = 10)
}
# Time-varying multivar node (3 time-points, 2 dimensional normal)
# plus changing the mean over time, as as function of t:
if (requireNamespace("mvtnorm", quietly = TRUE)) {
D <- DAG.empty()
D <- D +
node(c("X1", "X2"), t = 0:2, distr = "mvtnorm::rmvnorm",
asis.params = list(
mean = "c(0,1) + t",
sigma = "matrix(rep(0.75,4), ncol=2)"))
Dset5b <- set.DAG(D)
sim(Dset5b, n = 10)
}
# Two ways to define the same bivariate uniform copula:
if (requireNamespace("copula", quietly = TRUE)) {
D <- DAG.empty()
D <- D +
# with a warning since normalCopula() returns an object unknown to simcausal:
node(c("X1","X2"), distr = "copula::rCopula",
copula = eval(copula::normalCopula(0.75, dim = 2))) +
# same, as above:
node(c("X3","X4"), distr = "copula::rCopula",
asis.params = list(copula = "copula::normalCopula(0.75, dim = 2)"))
vecfun.add("qbinom")
# Bivariate binomial derived from previous copula, with same correlation:
D <- D +
node(c("A.Bin1", "A.Bin2"), distr = "rconst",
const = c(qbinom(X1, 10, 0.5), qbinom(X2, 15, 0.7)))
Dset3 <- set.DAG(D)
sim(Dset3, n = 10)
}
# Same as "A.Bin1" and "A.Bin2", but directly using rmvbin function in bindata package:
if (requireNamespace("bindata", quietly = TRUE)) {
D <- DAG.empty()
D <- D +
node(c("B.Bin1","B.Bin2"), distr = "bindata::rmvbin",
asis.params = list(
margprob = "c(0.5, 0.5)",
bincorr = "matrix(c(1,0.75,0.75,1), ncol=2)"))
Dset4b <- set.DAG(D)
sim(Dset4b, n = 10)
}
#---------------------------------------------------------------------------------------
# EXAMPLE 8: Combining simcausal non-standard evaluation with eval() forced evaluation
#---------------------------------------------------------------------------------------
coefAi <- 1:10
D <- DAG.empty()
D <- D +
node("A", t = 1, distr = "rbern", prob = 0.7) +
node("A", t = 2:10, distr = "rconst", const = eval(coefAi[t]) * A[t-1])
Dset8 <- set.DAG(D)
sim(Dset8, n = 10)
#---------------------------------------------------------------------------------------
# TWO equivalent ways of creating a multivariate node (combining nodes W1 and W2):
#---------------------------------------------------------------------------------------
D <- DAG.empty()
D <- D + node("W1", distr = "rbern", prob = 0.45)
D <- D + node("W2", distr = "rconst", const = 1)
# option 1:
D <- D + node(c("W1.copy1", "W2.copy1"), distr = "rconst", const = c(W1, W2))
# equivalent option 2:
create_mat <- function(W1, W2) cbind(W1, W2)
vecfun.add("create_mat")
D <- D + node(c("W1.copy2", "W2.copy2"), distr = "rconst", const = create_mat(W1, W2))
Dset <- set.DAG(D)
sim(Dset, n=10, rndseed=1)
Run the code above in your browser using DataLab