Data analysis using the model specification (linkS4class{SimSem}
) or the mx model object (MxModel
). Data will be multiply imputed if the miss
argument is specified.
analyze(model, data, package="lavaan", miss=NULL, aux=NULL, group = NULL,
mxMixture = FALSE, ...)
The lavaan
object containing the output
The simsem model template (linkS4class{SimSem}
) or the mx model object (MxModel
)
The target dataset
The package used in data analysis. Currently, only lavaan
package can be used.
The missing object with the specification of auxiliary variable or the specification for the multiple imputation.
List of auxiliary variables
A group variable. This argument is applicable only when the model
argument is a MxModel
object.
A logical whether to the analysis model is a mixture model. This argument is applicable when MxModel
is used in the model
argument only.
Additional arguments in the lavaan
function. See also lavOptions
Patrick Miller (University of Notre Dame; pmille13@nd.edu), Sunthud Pornprasertmanit (psunthud@gmail.com)
Note that users can use functions provided by lavaan
package (lavaan
, cfa
, sem
, or growth
) if they wish to analyze data by lavaan directly.
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
RTE <- binds(diag(6))
VY <- bind(rep(NA,6),2)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
dat <- generate(CFA.Model,200)
out <- analyze(CFA.Model,dat)
Run the code above in your browser using DataLab