# NOT RUN {
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.A <- analyze(model.A, PoliticalDemocracy)
# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path.B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))
out.B <- analyze(model.B, PoliticalDemocracy)
loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0
# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)
# Get sample size
n <- nrow(PoliticalDemocracy)
# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)
# Find the likelihood ratio ;The output may contain some warnings here.
# When the number of replications increases (e.g., 1000), the warnings should disappear.
likRatioFit(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)
# }
Run the code above in your browser using DataLab