# NOT RUN {
# Nested model: One factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")
# Parent model: two factors
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
# The actual number of replications should be greater than 10.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
# Plot the cutoffs in nested model comparison
plotCutoffNested(Output.NULL.NULL, Output.NULL.ALT, alpha=0.05)
# }
Run the code above in your browser using DataLab