Learn R Programming

simsem (version 0.5-16)

popMisfitMACS: Find population misfit by sufficient statistics

Description

Find the value quantifying the amount of population misfit: \(F_0\), RMSEA, and SRMR. See the definition of each index at summaryMisspec.

Usage

popMisfitMACS(paramM, paramCM, misspecM, misspecCM, dfParam=NULL, fit.measures="all")

Arguments

paramM

The model-implied mean from the real parameters

paramCM

The model-implied covariance matrix from the real parameters

misspecM

The model-implied mean from the real and misspecified parameters

misspecCM

The model-implied covariance matrix from the real and misspecified parameters

dfParam

The degree of freedom of the real model

fit.measures

The names of indices used to calculate population misfit. There are three types of misfit: 1) discrepancy function ("f0"; see popDiscrepancy), 2) root mean squared error of approximation ("rmsea"; Equation 12 in Browne & Cudeck, 1992), and 3) standardized root mean squared residual ("srmr")

Value

The vector of the misfit indices

References

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230-258.

Examples

Run this code
# NOT RUN {
m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popMisfitMACS(m1, S1, m2, S2)
# }

Run the code above in your browser using DataLab