# Ungrouped data
cMat <- genCorMat(nvars = 4, rho = .2, corstr = "ar1", nclusters = 1)
def <-
defData(varname = "xbase", formula = 5, variance = .4, dist = "gamma") |>
defData(varname = "lambda", formula = ".5 + .1*xbase", dist = "nonrandom", link = "log") |>
defData(varname = "n", formula = 3, dist = "noZeroPoisson")
dd <- genData(101, def, id = "cid")
## Specify with nvars, rho, and corstr
addCorGen(
dtOld = dd, idvar = "cid", nvars = 3, rho = .7, corstr = "cs",
dist = "poisson", param1 = "lambda"
)
## Specify with covMatrix
addCorGen(
dtOld = dd, idvar = "cid", corMatrix = cMat,
dist = "poisson", param1 = "lambda"
)
# Grouped data
cMats <- genCorMat(nvars = dd$n, rho = .5, corstr = "cs", nclusters = nrow(dd))
dx <- genCluster(dd, "cid", "n", "id")
## Specify with nvars, rho, and corstr
addCorGen(
dtOld = dx, idvar = "cid", rho = .8, corstr = "ar1", dist = "poisson", param1 = "xbase"
)
## Specify with covMatrix
addCorGen(
dtOld = dx, idvar = "cid", corMatrix = cMats, dist = "poisson", param1 = "xbase"
)
Run the code above in your browser using DataLab