This function uses the Generalized Method of Wavelet Moments (GMWM) to estimate the parameters of a time series model.
gmwm_engine(
theta,
desc,
objdesc,
model_type,
wv_empir,
omega,
scales,
starting
)
A vec
that contains the parameter estimates from GMWM estimator.
A vec
with dimensions N x 1 that contains user-supplied initial values for parameters
A vector<string>
indicating the models that should be considered.
A field<vec>
containing a list of parameters (e.g. AR(1) = c(1,1), ARMA(p,q) = c(p,q,1))
A string
that represents the model transformation
A vec
that contains the empirical wavelet variance
A mat
that represents the covariance matrix.
A vec
that contains the scales or taus (2^(1:J))
A bool
that indicates whether we guessed starting (T) or the user supplied estimates (F).
JJB
If type = "imu" or "ssm", then parameter vector should indicate the characters of the models that compose the latent or state-space model. The model options are:
"AR1"a first order autoregressive process with parameters \((\phi,\sigma^2)\)
"ARMA"an autoregressive moving average process with parameters \((\phi _p, \theta _q, \sigma^2)\)
"DR"a drift with parameter \(\omega\)
"QN"a quantization noise process with parameter \(Q\)
"RW"a random walk process with parameter \(\sigma^2\)
"WN"a white noise process with parameter \(\sigma^2\)
If model_type = "imu" or type = "ssm" then starting values pass through an initial bootstrap and pseudo-optimization before being passed to the GMWM optimization. If robust = TRUE the function takes the robust estimate of the wavelet variance to be used in the GMWM estimation procedure.
Wavelet variance based estimation for composite stochastic processes, S. Guerrier and Robust Inference for Time Series Models: a Wavelet-Based Framework, S. Guerrier