This function uses information obtained previously (e.g. WV covariance matrix) to re-estimate a different model parameterization
gmwm_update_cpp(
theta,
desc,
objdesc,
model_type,
N,
expect_diff,
ranged,
orgV,
scales,
wv,
starting,
compute_v,
K,
H,
G,
robust,
eff
)
A field<mat>
that contains the parameter estimates from GMWM estimator.
A vec
with dimensions N x 1 that contains user-supplied initial values for parameters
A vector<string>
indicating the models that should be considered.
A field<vec>
containing a list of parameters (e.g. AR(1) = c(1,1), ARMA(p,q) = c(p,q,1))
A string
that represents the model transformation
A vec
that contains the scales or taus (2^(1:J))
A bool
that indicates whether we guessed starting (T) or the user supplied estimates (F).
JJB
Wavelet variance based estimation for composite stochastic processes, S. Guerrier and Robust Inference for Time Series Models: a Wavelet-Based Framework, S. Guerrier