Learn R Programming

simulatorZ (version 1.6.0)

funCV: funCV

Description

Cross validation function

Usage

funCV(obj, fold, y.var, trainFun = masomenos, funCvSubset = cvSubsets)

Arguments

obj
a ExpressionSet, matrix or RangedSummarizedExperiment object. If it is a

matrix, columns represent samples

fold
the number of folds in cross validation
y.var
response variable, matrix, data.frame(with 2 columns) or Surv object
trainFun
training function, which takes gene expression matrix X and response variable y as input, the coefficients as output
funCvSubset
function to divide one Expression Set into subsets for cross validation

Value

Examples

Run this code


library(curatedOvarianData)


library(GenomicRanges)


set.seed(8)


data( E.MTAB.386_eset )


eset <- E.MTAB.386_eset[1:100, 1:30]


time <- eset$days_to_death


cens.chr <- eset$vital_status


cens <- c()


for(i in seq_along(cens.chr)){


  if(cens.chr=="living") cens[i] <- 1


  else cens[i] <- 0


}


y <- Surv(time, cens)  


y1 <- cbind(time, cens)





nrows <- 200; ncols <- 6


counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)


rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),


                     IRanges(floor(runif(200, 1e5, 1e6)), width=100),


                     strand=sample(c("+", "-"), 200, TRUE))


colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),


                     row.names=LETTERS[1:6])


sset <- SummarizedExperiment(assays=SimpleList(counts=counts),


                             rowRanges=rowRanges, colData=colData)


time <- sample(4500:4700, 6, replace=TRUE)


cens <- sample(0:1, 6, replace=TRUE)


y.vars <- Surv(time, cens)





funCV(eset, 3, y)


funCV(eset, 3, y1, trainFun=plusMinus)


funCV(exprs(eset), 3, y)





funCV(sset, 3, y.vars)


## any training function will do as long as it takes the gene expression matrix X


## and response variable y(matrix, data.frame or Surv object) as parameters, and


## return the coefficients as its value


Run the code above in your browser using DataLab