set.seed(8)
library(curatedOvarianData)
library(GenomicRanges)
data(GSE17260_eset)
data(E.MTAB.386_eset)
data(GSE14764_eset)
esets <- list(GSE17260=GSE17260_eset, E.MTAB.386=E.MTAB.386_eset, GSE14764=GSE14764_eset)
esets.list <- lapply(esets, function(eset){
return(eset[1:1500, 1:10])
})
result.set <- geneFilter(esets.list, 0)
result.set
### as we cannot calculate correlation with one set, this function just
### delivers the same set if esets has length 1
result.oneset <- geneFilter(esets.list[1])
result.oneset
## Support matrices
X.list <- lapply(esets.list, function(eset){
return(exprs(eset)) ## Columns represent samples!
})
result.set <- geneFilter(X.list, 0)
dim(result.set[[1]])
## Support RangedSummarizedExperiment
nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
s.list <- list(sset, sset)
result.set <- geneFilter(s.list, 0.9)
## the same set should resemble each other, no genes filtered
dim(assay(result.set[[1]]))
Run the code above in your browser using DataLab