library(curatedOvarianData)
library(GenomicRanges)
data(GSE17260_eset)
data(E.MTAB.386_eset)
data(GSE14764_eset)
esets <- list(GSE17260=GSE17260_eset, E.MTAB.386=E.MTAB.386_eset, GSE14764=GSE14764_eset)
esets.list <- lapply(esets, function(eset){
return(eset[1:1000, 1:10])
})
## simulate on multiple ExpressionSets
set.seed(8)
# one-step bootstrap: skip resampling set labels
simmodels <- simData(esets.list, 20, type="one-step")
# two-step-non-parametric bootstrap
simmodels <- simData(esets.list, 10, type="two-steps")
## simulate one set
simmodels <- simData(list(esets.list[[1]]), 10, type="two-steps")
## balancing covariates
# single covariate
simmodels <- simData(list(esets.list[[1]]), 5, balance.variables="tumorstage")
# multiple covariates
simmodels <- simData(list(esets.list[[1]]), 5,
balance.variables=c("tumorstage", "age_at_initial_pathologic_diagnosis"))
## Support matrices
X.list <- lapply(esets.list, function(eset){
return(exprs(eset))
})
simmodels <- simData(X.list, 20, type="two-steps")
## Support RangedSummarizedExperiment
nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
s.list <- list(sset[,1:3], sset[,4:6])
simmodels <- simData(s.list, 20, type="two-steps")
Run the code above in your browser using DataLab