library(curatedOvarianData)
library(GenomicRanges)
data(GSE17260_eset)
data(E.MTAB.386_eset)
data(GSE14764_eset)
esets <- list(GSE17260=GSE17260_eset, E.MTAB.386=E.MTAB.386_eset, GSE14764=GSE14764_eset)
esets.list <- lapply(esets, function(eset){
return(eset[1:500, 1:20])
})
## simulate on multiple ExpressionSets
set.seed(8)
y.list <- lapply(esets.list, function(eset){
time <- eset$days_to_death
cens.chr <- eset$vital_status
cens <- c()
for(i in seq_along(cens.chr)){
if(cens.chr[i] == "living") cens[i] <- 1
else cens[i] <- 0
}
y <- Surv(time, cens)
return(y)
})
# generate on original ExpressionSets
z <- zmatrix(esets.list, y.list, 3)
# generate on simulated ExpressionSets
simmodels <- simBootstrap(esets.list, y.list, 10, 100)
z <- zmatrix(simmodels$obj.list, simmodels$y.vars.list, 3)
# support matrix
X.list <- lapply(esets.list, function(eset){
newx <- exprs(eset) ### columns represent samples !!
return(newx)
})
z <- zmatrix(X.list, y.list, 3)
# support RangedSummarizedExperiment
nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
time <- sample(4500:4700, 6, replace=TRUE)
cens <- sample(0:1, 6, replace=TRUE)
y.vars <- Surv(time, cens)
z <- zmatrix(list(sset[,1:3], sset[,4:6]), list(y.vars[1:3,],y.vars[4:6,]), 3)
Run the code above in your browser using DataLab