Learn R Programming

simulatorZ (version 1.6.0)

zmatrix: zmatrix

Description

generate a matrix of c statistics

Usage

zmatrix(obj, y.vars, fold, trainingFun = masomenos, cvFun = funCV,
cvSubsetFun = cvSubsets)

Arguments

obj
a list of ExpressionSet, matrix or RangedSummarizedExperiment objects.

If its elements are matrices, columns represent samples

y.vars
a list of response variables, all the response variables shold be

matrix, data.frame(with 2 columns) or Surv object

fold
cvFun parameter, in this case passes to funCV()
trainingFun
training function
cvFun
function to perform cross study within one set
cvSubsetFun
function to divide the expression sets into subsets for cross validation

Value

Examples

Run this code


library(curatedOvarianData)


library(GenomicRanges)


data(GSE17260_eset)


data(E.MTAB.386_eset)


data(GSE14764_eset)


esets <- list(GSE17260=GSE17260_eset, E.MTAB.386=E.MTAB.386_eset, GSE14764=GSE14764_eset)


esets.list <- lapply(esets, function(eset){


  return(eset[1:500, 1:20])


})





## simulate on multiple ExpressionSets


set.seed(8) 





y.list <- lapply(esets.list, function(eset){


  time <- eset$days_to_death


  cens.chr <- eset$vital_status


  cens <- c()


  for(i in seq_along(cens.chr)){


    if(cens.chr[i] == "living") cens[i] <- 1


    else cens[i] <- 0


  }


  y <- Surv(time, cens)


  return(y)


})





# generate on original ExpressionSets


z <- zmatrix(esets.list, y.list, 3)





# generate on simulated ExpressionSets


simmodels <- simBootstrap(esets.list, y.list, 10, 100)


z <- zmatrix(simmodels$obj.list, simmodels$y.vars.list, 3)





# support matrix


X.list <- lapply(esets.list, function(eset){


  newx <- exprs(eset) ### columns represent samples !!


  return(newx)


}) 


z <- zmatrix(X.list, y.list, 3)





# support RangedSummarizedExperiment


nrows <- 200; ncols <- 6


counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)


rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),


                     IRanges(floor(runif(200, 1e5, 1e6)), width=100),


                     strand=sample(c("+", "-"), 200, TRUE))


colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),


                     row.names=LETTERS[1:6])


sset <- SummarizedExperiment(assays=SimpleList(counts=counts),


                             rowRanges=rowRanges, colData=colData)





time <- sample(4500:4700, 6, replace=TRUE)


cens <- sample(0:1, 6, replace=TRUE)


y.vars <- Surv(time, cens)





z <- zmatrix(list(sset[,1:3], sset[,4:6]), list(y.vars[1:3,],y.vars[4:6,]), 3)


Run the code above in your browser using DataLab