# NOT RUN {
library(mice)
library(miceadds)
#############################################################################
# EXAMPLE 1: Categorize questionnaire data
#############################################################################
data(data.smallscale, package="miceadds")
dat <- data.smallscale
# (0) select dataset
dat <- dat[, 9:20 ]
summary(dat)
categorical <- colnames(dat)[2:6]
# (1) categorize data
res <- sirt::categorize( dat, categorical=categorical )
# (2) multiple imputation using the mice package
dat2 <- res$data
VV <- ncol(dat2)
impMethod <- rep( "sample", VV ) # define random sampling imputation method
names(impMethod) <- colnames(dat2)
imp <- mice::mice( as.matrix(dat2), impMethod=impMethod, maxit=1, m=1 )
dat3 <- mice::complete(imp,action=1)
# (3) decategorize dataset
dat3a <- sirt::decategorize( dat3, categ_design=res$categ_design )
#############################################################################
# EXAMPLE 2: Categorize ordinal and continuous data
#############################################################################
data(data.ma01,package="miceadds")
dat <- data.ma01
summary(dat[,-c(1:2)] )
# define variables to be categorized
categorical <- c("books", "paredu" )
# define quantiles
quant <- c(6,5,11)
names(quant) <- c("math", "read", "hisei")
# categorize data
res <- sirt::categorize( dat, categorical=categorical, quant=quant)
str(res)
# }
Run the code above in your browser using DataLab