#############################################################################
# EXAMPLE 1: Reading dataset
#############################################################################
data( data.read, package="sirt")
dat <- data.read
# estimate the Rasch model
mod <- sirt::rasch.mml2( dat )
# estimate classification accuracy (3 levels)
cutscores <- c( -1, .3 ) # cut scores at theta=-1 and theta=.3
sirt::class.accuracy.rasch( cutscores=cutscores, b=mod$item$b,
meantheta=0, sdtheta=mod$sd.trait,
theta.l=seq(-4,4,len=200), n.sims=3000)
## Cut Scores
## [1] -1.0 0.3
##
## WLE reliability (by simulation)=0.671
## WLE consistency (correlation between two parallel forms)=0.649
##
## Classification accuracy and consistency
## agree0 agree1 kappa consistency
## analytical 0.68 0.990 0.492 NA
## simulated 0.70 0.997 0.489 0.599
##
## Probability classification table
## Est_Class1 Est_Class2 Est_Class3
## True_Class1 0.136 0.041 0.001
## True_Class2 0.081 0.249 0.093
## True_Class3 0.009 0.095 0.294
Run the code above in your browser using DataLab