This function computes the DETECT statistics for dichotomous item responses and the polyDETECT statistic for polytomous item responses under a confirmatory specification of item clusters (Stout, Habing, Douglas & Kim, 1996; Zhang & Stout, 1999a, 1999b; Zhang, 2007; Bonifay, Reise, Scheines, & Meijer, 2015).
Item responses in a multi-matrix design are allowed (Zhang, 2013).
An exploratory DETECT analysis can be conducted using the
expl.detect
function.
conf.detect(data, score, itemcluster, bwscale=1.1, progress=TRUE,
thetagrid=seq(-3, 3, len=200), smooth=TRUE, use_sum_score=FALSE, bias_corr=TRUE)# S3 method for conf.detect
summary(object, digits=3, file=NULL, ...)
A list with following entries:
Data frame with statistics DETECT, ASSI, RATIO, MADCOV100 and MCOV100
Individual contributions to conditional covariance
Evaluated conditional covariance
An \(N \times I\) data frame of dichotomous or polytomous responses. Missing responses are allowed.
An ability estimate, e.g. the WLE, sum score or mean score
Item cluster for each item. The order of entries must correspond
to the columns in data
.
Bandwidth factor for calculation of conditional covariance
(see ccov.np
)
Display progress?
Logical indicating whether smoothing should be applied for conditional covariance estimation
A vector which contains theta values where conditional covariances are evaluated.
Logical indicating whether sum score should be used. With this option, the bias corrected conditional covariance of Zhang and Stout (1999) is used.
Logical indicating whether bias correction (Zhang & Stout, 1999)
should be utilized if use_sum_score=TRUE
.
Object of class conf.detect
Number of digits for rounding in summary
Optional file name to be sunk for summary
Further arguments to be passed
The result of DETECT are the indices DETECT
, ASSI
and RATIO
(see Zhang 2007 for details) calculated
for the options unweighted
and weighted
.
The option unweighted
means that all conditional covariances of
item pairs are equally weighted, weighted
means that
these covariances are weighted by the sample size of item pairs.
In case of multi matrix item designs, both types of indices can
differ.
The classification scheme of these indices are as follows (Jang & Roussos, 2007; Zhang, 2007):
Strong multidimensionality | DETECT > 1.00 |
Moderate multidimensionality | .40 < DETECT < 1.00 |
Weak multidimensionality | .20 < DETECT < .40 |
Essential unidimensionality | DETECT < .20 |
Maximum value under simple structure | ASSI=1 | RATIO=1 |
Essential deviation from unidimensionality | ASSI > .25 | RATIO > .36 |
Essential unidimensionality | ASSI < .25 | RATIO < .36 |
Note that the expected value of a conditional covariance for an item pair
is negative when a unidimensional model holds. In consequence,
the DETECT index can become negative for unidimensional data
(see Example 3). This can be also seen in the statistic
MCOV100
in the value detect
.
Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (2015). When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensionality index. Structural Equation Modeling, 22(4), 504-516. tools:::Rd_expr_doi("10.1080/10705511.2014.938596")
Jang, E. E., & Roussos, L. (2007). An investigation into the dimensionality of TOEFL using conditional covariance-based nonparametric approach. Journal of Educational Measurement, 44(1), 1-21. tools:::Rd_expr_doi("10.1111/j.1745-3984.2007.00024.x")
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. tools:::Rd_expr_doi("10.1177/014662169602000403")
Zhang, J. (2007). Conditional covariance theory and DETECT for polytomous items. Psychometrika, 72(1), 69-91. tools:::Rd_expr_doi("10.1007/s11336-004-1257-7")
Zhang, J. (2013). A procedure for dimensionality analyses of response data from various test designs. Psychometrika, 78(1), 37-58. tools:::Rd_expr_doi("10.1007/s11336-012-9287-z")
Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64(2), 129-152. tools:::Rd_expr_doi("10.1007/BF02294532")
Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64(2), 213-249. tools:::Rd_expr_doi("10.1007/BF02294536")
For a download of the free DIM-Pack software (DIMTEST, DETECT) see https://psychometrics.onlinehelp.measuredprogress.org/tools/dim/.
See expl.detect
for exploratory DETECT analysis.