Learn R Programming

sirt (version 3.12-66)

isop.test: Testing the ISOP Model

Description

This function performs tests of the W1 axiom of the ISOP model (Scheiblechner, 2003). Standard errors of the corresponding \(W1_i\) statistics are obtained by Jackknife.

Usage

isop.test(data, jackunits=20, weights=rep(1, nrow(data)))

# S3 method for isop.test summary(object,...)

Value

A list with following entries

itemstat

Data frame with test and item statistics for the W1 axiom. The \(W1_i\) statistic is denoted as est while se is the corresponding standard error of the statistic. The sample size per item is N and M denotes the item mean.

Es

Number of concordances per item

Ed

Number of disconcordances per item

The \(W1_i\) statistics are printed by the summary method.

Arguments

data

Data frame with item responses

jackunits

A number of Jackknife units (if an integer is provided as the argument value) or a vector in the Jackknife units are already defined.

weights

Optional vector of sampling weights

object

Object of class isop.test

...

Further arguments to be passed

References

Scheiblechner, H. (2003). Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP). Psychometrika, 68, 79-96.

See Also

Fit the ISOP model with isop.dich or isop.poly.

See also the ISOP package at Rforge: http://www.rforge.net/ISOP/.

Examples

Run this code
#############################################################################
# EXAMPLE 1: ISOP model data.Students
#############################################################################

data(data.Students, package="CDM")
dat <- data.Students[, paste0("act",1:5) ]
dat <- dat[1:300, ]    # select first 300 students

# perform the ISOP test
mod <- sirt::isop.test(dat)
summary(mod)
  ## -> W1i statistics
  ##     parm   N     M   est    se      t
  ##   1 test 300    NA 0.430 0.036 11.869
  ##   2 act1 278 0.601 0.451 0.048  9.384
  ##   3 act2 275 0.473 0.473 0.035 13.571
  ##   4 act3 274 0.277 0.352 0.098  3.596
  ##   5 act4 291 1.320 0.381 0.054  7.103
  ##   6 act5 276 0.460 0.475 0.042 11.184

Run the code above in your browser using DataLab