Learn R Programming

sirt (version 3.12-66)

lavaan2mirt: Converting a lavaan Model into a mirt Model

Description

Converts a lavaan model into a mirt model. Optionally, the model can be estimated with the mirt::mirt function (est.mirt=TRUE) or just mirt syntax is generated (est.mirt=FALSE).

Extensions of the lavaan syntax include guessing and slipping parameters (operators ?=g1 and ?=s1) and a shortage operator for item groups (see __). See TAM::lavaanify.IRT for more details.

Usage

lavaan2mirt(dat, lavmodel, est.mirt=TRUE, poly.itemtype="gpcm", ...)

Value

A list with following entries

mirt

Object generated by mirt function if est.mirt=TRUE

mirt.model

Generated mirt model

mirt.syntax

Generated mirt syntax

mirt.pars

Generated parameter specifications in mirt

lavaan.model

Used lavaan model transformed by lavaanify function

dat

Used dataset. If necessary, only items used in the model are included in the dataset.

Arguments

dat

Dataset with item responses

lavmodel

Model specified in lavaan syntax (see lavaan::lavaanify)

est.mirt

An optional logical indicating whether the model should be estimated with mirt::mirt

poly.itemtype

Item type for polytomous data. This can be gpcm for the generalized partial credit model or graded for the graded response model.

...

Further arguments to be passed for estimation in mirt

Details

This function uses the lavaan::lavaanify (lavaan) function.

Only single group models are supported (for now).

See Also

See https://lavaan.ugent.be/ for lavaan resources.

See https://groups.google.com/forum/#!forum/lavaan for discussion about the lavaan package.

See mirt.wrapper for convenience wrapper functions for mirt::mirt objects.

See TAM::lavaanify.IRT for extensions of lavaanify.

See tam2mirt for converting fitted objects in the TAM package into fitted mirt::mirt objects.

Examples

Run this code
if (FALSE) {
#############################################################################
# EXAMPLE 1: Convert some lavaan syntax to mirt syntax for data.read
#############################################################################

library(mirt)
data(data.read)
dat <- data.read

#******************
#*** Model 1: Single factor model
lavmodel <- "
     # omit item C3
     F=~ A1+A2+A3+A4 + C1+C2+C4 + B1+B2+B3+B4
     F ~~ 1*F
            "

# convert syntax and estimate model
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=3) )
# inspect coefficients
coef(res$mirt)
mirt.wrapper.coef(res$mirt)
# converted mirt model and parameter table
cat(res$mirt.syntax)
res$mirt.pars

#******************
#*** Model 2: Rasch Model with first six items
lavmodel <- "
     F=~ a*A1+a*A2+a*A3+a*A4+a*B1+a*B2
     F ~~ 1*F
            "
# convert syntax and estimate model
res <- sirt::lavaan2mirt( dat,  lavmodel, est.mirt=FALSE)
# converted mirt model
cat(res$mirt.syntax)
# mirt parameter table
res$mirt.pars
# estimate model using generated objects
res2 <- mirt::mirt( res$dat, res$mirt.model, pars=res$mirt.pars )
mirt.wrapper.coef(res2)     # parameter estimates

#******************
#*** Model 3: Bifactor model
lavmodel <- "
     G=~ A1+A2+A3+A4 + B1+B2+B3+B4  + C1+C2+C3+C4
     A=~ A1+A2+A3+A4
     B=~ B1+B2+B3+B4
     C=~ C1+C2+C3+C4
     G ~~ 1*G
     A ~~ 1*A
     B ~~ 1*B
     C ~~ 1*C
            "
res <- sirt::lavaan2mirt( dat,  lavmodel, est.mirt=FALSE )
# mirt syntax and mirt model
cat(res$mirt.syntax)
res$mirt.model
res$mirt.pars

#******************
#*** Model 4: 3-dimensional model with some parameter constraints
lavmodel <- "
     # some equality constraints among loadings
     A=~ a*A1+a*A2+a2*A3+a2*A4
     B=~ B1+B2+b3*B3+B4
     C=~ c*C1+c*C2+c*C3+c*C4
     # some equality constraints among thresholds
     A1 | da*t1
     A3 | da*t1
     B3 | da*t1
     C3 | dg*t1
     C4 | dg*t1
     # standardized latent variables
     A ~~ 1*A
     B ~~ 1*B
     C ~~ 1*C
     # estimate Cov(A,B) and Cov(A,C)
     A ~~ B
     A ~~ C
     # estimate mean of B
     B ~ 1
            "
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=3) )
# estimated parameters
mirt.wrapper.coef(res$mirt)
# generated mirt syntax
cat(res$mirt.syntax)
# mirt parameter table
mirt::mod2values(res$mirt)

#******************
#*** Model 5: 3-dimensional model with some parameter constraints and
#             parameter fixings
lavmodel <- "
     A=~ a*A1+a*A2+1.3*A3+A4  # set loading of A3 to 1.3
     B=~ B1+1*B2+b3*B3+B4
     C=~ c*C1+C2+c*C3+C4
     A1 | da*t1
     A3 | da*t1
     C4 | dg*t1
     B1 | 0*t1
     B3 | -1.4*t1   # fix item threshold of B3 to -1.4
     A ~~ 1*A
     B ~~ B         # estimate variance of B freely
     C ~~ 1*C
     A ~~ B         # estimate covariance between A and B
     A ~~ .6 * C    # fix covariance to .6
     A ~ .5*1       # set mean of A to .5
     B ~ 1          # estimate mean of B
            "
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=3) )
mirt.wrapper.coef(res$mirt)

#******************
#*** Model 6: 1-dimensional model with guessing and slipping parameters
#******************

lavmodel <- "
     F=~ c*A1+c*A2+1*A3+1.3*A4 + C1__C4 + a*B1+b*B2+b*B3+B4
     # guessing parameters
     A1+A2 ?=guess1*g1
     A3 ?=.25*g1
     B1+C1 ?=g1
     B2__B4 ?=0.10*g1
     # slipping parameters
     A1+A2+C3 ?=slip1*s1
     A3 ?=.02*s1
     # fix item intercepts
     A1 | 0*t1
     A2 | -.4*t1
     F ~ 1    # estimate mean of F
     F ~~ 1*F   # fix variance of F
            "
# convert syntax and estimate model
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=3) )
# coefficients
mirt.wrapper.coef(res$mirt)
# converted mirt model
cat(res$mirt.syntax)

#############################################################################
# EXAMPLE 2: Convert some lavaan syntax to mirt syntax for
#            longitudinal data data.long
#############################################################################

data(data.long)
dat <- data.long[,-1]

#******************
#*** Model 1: Rasch model for T1
lavmodel <- "
     F=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1
     F ~~ F
            "
# convert syntax and estimate model
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=20) )
# inspect coefficients
mirt.wrapper.coef(res$mirt)
# converted mirt model
cat(res$mirt.syntax)

#******************
#*** Model 2: Rasch model for two time points
lavmodel <- "
     F1=~ 1*I1T1 +1*I2T1+1*I3T1+1*I4T1+1*I5T1+1*I6T1
     F2=~ 1*I3T2 +1*I4T2+1*I5T2+1*I6T2+1*I7T2+1*I8T2
     F1 ~~ F1
     F1 ~~ F2
     F2 ~~ F2
     # equal item difficulties of same items
     I3T1 | i3*t1
     I3T2 | i3*t1
     I4T1 | i4*t1
     I4T2 | i4*t1
     I5T1 | i5*t1
     I5T2 | i5*t1
     I6T1 | i6*t1
     I6T2 | i6*t1
     # estimate mean of F1, but fix mean of F2
     F1 ~ 1
     F2 ~ 0*1
            "
# convert syntax and estimate model
res <- sirt::lavaan2mirt( dat,  lavmodel, verbose=TRUE, technical=list(NCYCLES=20) )
# inspect coefficients
mirt.wrapper.coef(res$mirt)
# converted mirt model
cat(res$mirt.syntax)

#-- compare estimation with smirt function
# define Q-matrix
I <- ncol(dat)
Q <- matrix(0,I,2)
Q[1:6,1] <- 1
Q[7:12,2] <- 1
rownames(Q) <- colnames(dat)
colnames(Q) <- c("T1","T2")
# vector with same items
itemnr <- as.numeric( substring( colnames(dat),2,2) )
# fix mean at T2 to zero
mu.fixed <- cbind( 2,0 )
# estimate model in smirt
mod1 <- sirt::smirt(dat, Qmatrix=Q, irtmodel="comp", est.b=itemnr, mu.fixed=mu.fixed )
summary(mod1)

#############################################################################
# EXAMPLE 3: Converting lavaan syntax for polytomous data
#############################################################################

data(data.big5)
# select some items
items <- c( grep( "O", colnames(data.big5), value=TRUE )[1:6],
            grep( "N", colnames(data.big5), value=TRUE )[1:4] )
#  O3  O8  O13 O18 O23 O28 N1  N6  N11 N16
dat <- data.big5[, items ]
library(psych)
psych::describe(dat)

#******************
#*** Model 1: Partial credit model
lavmodel <- "
      O=~ 1*O3+1*O8+1*O13+1*O18+1*O23+1*O28
      O ~~ O
         "
# estimate model in mirt
res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=20), verbose=TRUE)
# estimated mirt model
mres <- res$mirt
# mirt syntax
cat(res$mirt.syntax)
  ##   O=1,2,3,4,5,6
  ##   COV=O*O
# estimated parameters
mirt.wrapper.coef(mres)
# some plots
mirt::itemplot( mres, 3 )   # third item
plot(mres)   # item information
plot(mres,type="trace")  # item category functions

# graded response model with equal slopes
res1 <- sirt::lavaan2mirt( dat, lavmodel, poly.itemtype="graded", technical=list(NCYCLES=20),
              verbose=TRUE )
mirt.wrapper.coef(res1$mirt)

#******************
#*** Model 2: Generalized partial credit model with some constraints
lavmodel <- "
      O=~ O3+O8+O13+a*O18+a*O23+1.2*O28
      O ~ 1   # estimate mean
      O ~~ O  # estimate variance
      # some constraints among thresholds
      O3  | d1*t1
      O13 | d1*t1
      O3  | d2*t2
      O8  | d3*t2
      O28 | (-0.5)*t1
         "
# estimate model in mirt
res <- sirt::lavaan2mirt( dat, lavmodel, technical=list(NCYCLES=5), verbose=TRUE)
# estimated mirt model
mres <- res$mirt
# estimated parameters
mirt.wrapper.coef(mres)

#*** generate syntax for mirt for this model and estimate it in mirt package
# Items: O3  O8  O13 O18 O23 O28
mirtmodel <- mirt::mirt.model( "
             O=1-6
             # a(O18)=a(O23), t1(O3)=t1(O18), t2(O3)=t2(O8)
             CONSTRAIN=(4,5,a1), (1,3,d1), (1,2,d2)
             MEAN=O
             COV=O*O
               ")
# initial table of parameters in mirt
mirt.pars <- mirt::mirt( dat[,1:6], mirtmodel, itemtype="gpcm", pars="values")
# fix slope of item O28 to 1.2
ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="a1") )
mirt.pars[ ind, "est"] <- FALSE
mirt.pars[ ind, "value"] <- 1.2
# fix d1 of item O28 to -0.5
ind <- which( ( mirt.pars$item=="O28" ) & ( mirt.pars$name=="d1") )
mirt.pars[ ind, "est"] <- FALSE
mirt.pars[ ind, "value"] <- -0.5
# estimate model
res2 <- mirt::mirt( dat[,1:6], mirtmodel, pars=mirt.pars,
             verbose=TRUE, technical=list(NCYCLES=4) )
mirt.wrapper.coef(res2)
plot(res2, type="trace")
}

Run the code above in your browser using DataLab