#############################################################################
# EXAMPLE 1: PRMSE Reading data data.read
#############################################################################
data( data.read )
p1 <- sirt::prmse.subscores.scales(data=data.read,
subscale=substring( colnames(data.read), 1,1 ) )
print( p1, digits=3 )
## A B C
## N 328.000 328.000 328.000
## nX 4.000 4.000 4.000
## M.X 2.616 2.811 3.253
## Var.X 1.381 1.059 1.107
## SD.X 1.175 1.029 1.052
## alpha.X 0.545 0.381 0.640
## [...]
## nZ 12.000 12.000 12.000
## M.Z 8.680 8.680 8.680
## Var.Z 5.668 5.668 5.668
## SD.Z 2.381 2.381 2.381
## alpha.Z 0.677 0.677 0.677
## [...]
## cor.TX_Z 0.799 0.835 0.684
## rmse.X 0.585 0.500 0.505
## rmse.Z 0.522 0.350 0.614
## rmse.XZ 0.495 0.350 0.478
## prmse.X 0.545 0.381 0.640
## prmse.Z 0.638 0.697 0.468
## prmse.XZ 0.674 0.697 0.677
#-> Scales A and B do not have lower RMSE,
# but for scale C the RMSE is smaller than the RMSE of a
# prediction based on a whole scale.
Run the code above in your browser using DataLab