This function estimates the probabilistic Guttman model which is a special case of an ordered latent trait model (Hanson, 2000; Proctor, 1970).
prob.guttman(dat, pid=NULL, guess.equal=FALSE, slip.equal=FALSE,
itemlevel=NULL, conv1=0.001, glob.conv=0.001, mmliter=500)# S3 method for prob.guttman
summary(object,...)
# S3 method for prob.guttman
anova(object,...)
# S3 method for prob.guttman
logLik(object,...)
# S3 method for prob.guttman
IRT.irfprob(object,...)
# S3 method for prob.guttman
IRT.likelihood(object,...)
# S3 method for prob.guttman
IRT.posterior(object,...)
An object of class prob.guttman
Estimated person parameters
Estimated item parameters
Ability levels
Estimated trait distribution
Information criteria
Deviance
Number of iterations
Specified allocation of items to trait levels
An \(N \times I\) data frame of dichotomous item responses
Optional vector of person identifiers
Should the same guessing parameters for all the items estimated?
Should the same slipping parameters for all the items estimated?
A vector of item levels of the Guttman scale for each item. If there are \(K\) different item levels, then the Guttman scale possesses \(K\) ordered trait values.
Convergence criterion for item parameters
Global convergence criterion for the deviance
Maximum number of iterations
Object of class prob.guttman
Further arguments to be passed
Hanson, B. (2000). IRT parameter estimation using the EM algorithm. Technical Report.
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.