Learn R Programming

sirt (version 3.12-66)

reliability.nonlinearSEM: Estimation of Reliability for Confirmatory Factor Analyses Based on Dichotomous Data

Description

This function estimates a model based reliability using confirmatory factor analysis (Green & Yang, 2009).

Usage

reliability.nonlinearSEM(facloadings, thresh, resid.cov=NULL, cor.factors=NULL)

Value

A list. The reliability is the list element omega.rel

Arguments

facloadings

Matrix of factor loadings

thresh

Vector of thresholds

resid.cov

Matrix of residual covariances

cor.factors

Optional matrix of covariances (correlations) between factors. The default is a diagonal matrix with variances of 1.

References

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.

See Also

This function is used in greenyang.reliability.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Reading data set
#############################################################################
data(data.read)
dat <- data.read
I <- ncol(dat)

# define item clusters
itemcluster <- rep( 1:3, each=4)
error.corr <- diag(1,ncol(dat))
for ( ii in 1:3){
    ind.ii <- which( itemcluster==ii )
    error.corr[ ind.ii, ind.ii ] <- ii
        }
# estimate the model with error correlations
mod1 <- sirt::rasch.pml3( dat, error.corr=error.corr)
summary(mod1)

# extract item parameters
thresh <- - matrix( mod1$item$a * mod1$item$b, I, 1 )
A <- matrix( mod1$item$a * mod1$item$sigma, I, 1 )
# extract estimated correlation matrix
corM <- mod1$eps.corrM
# compute standardized factor loadings
facA <- 1 / sqrt( A^2 + 1 )
resvar <- 1 - facA^2
covM <- outer( sqrt(resvar[,1]), sqrt(resvar[,1] ) ) * corM
facloadings <- A *facA

# estimate reliability
rel1 <- sirt::reliability.nonlinearSEM( facloadings=facloadings, thresh=thresh,
           resid.cov=covM)
rel1$omega.rel

Run the code above in your browser using DataLab