Learn R Programming

sirt (version 3.12-66)

rmvn: Simulation of a Multivariate Normal Distribution with Exact Moments

Description

Simulates a dataset from a multivariate or univariate normal distribution that exactly fulfils the specified mean vector and the covariance matrix.

Usage

# multivariate normal distribution
rmvn(N, mu, Sigma, exact=TRUE)

# univariate normal distribution ruvn(N, mean=0, sd=1, exact=TRUE)

Value

A dataframe or a vector

Arguments

N

Sample size

mu

Mean vector

Sigma

Covariance matrix

exact

Logical indicating whether mu and Sigma should be exactly reproduced.

mean

Numeric value for mean

sd

Numeric value for standard deviation

See Also

Examples

Run this code
#############################################################################
# EXAMPLE 1: Simulate multivariate normal data
#############################################################################

# define covariance matrix and mean vector
rho <- .8
Sigma <- matrix(rho,3,3)
diag(Sigma) <- 1
mu <- c(0,.5,1)

#* simulate data
set.seed(87)
dat <- sirt::rmvn(N=200, mu=mu, Sigma=Sigma)
#* check means and covariances
stats::cov.wt(dat, method="ML")

if (FALSE) {
#############################################################################
# EXAMPLE 2: Simulate univariate normal data
#############################################################################

#* simulate data
x <- sirt::ruvn(N=20, mean=.5, sd=1.2, exact=TRUE)
# check results
stats::var(x)
sirt:::sirt_var(x)
}

Run the code above in your browser using DataLab