#############################################################################
# EXAMPLE 1: Dataset Reading
#############################################################################
data(data.read)
dat <- data.read
# estimation of the Rasch model
res <- sirt::rasch.mml2( dat, parm.conv=.001)
# WLE estimation
wle1 <- sirt::wle.rasch(dat, b=res$item$thresh )
# simple jackknife WLE estimation
wle2 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh )
## WLE Reliability=0.651
# SE(WLE) for testlets A, B and C
wle3 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh,
testlet=substring( colnames(dat),1,1) )
## WLE Reliability=0.572
# SE(WLE) for item strata A,B, C
wle4 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh,
stratum=substring( colnames(dat),1,1) )
## WLE Reliability=0.683
# SE (WLE) for finite item strata
# A (10 items), B (7 items), C (4 items -> no sampling error)
# in every stratum 4 items were sampled
size.itempop <- c(10,7,4)
names(size.itempop) <- c("A","B","C")
wle5 <- sirt::wle.rasch.jackknife(dat, b=res$item$thresh,
stratum=substring( colnames(dat),1,1),
size.itempop=size.itempop )
## Stratum A (Mean) Correction Factor 0.6
## Stratum B (Mean) Correction Factor 0.42857
## Stratum C (Mean) Correction Factor 0
## WLE Reliability=0.876
# compare different estimated standard errors
a2 <- stats::aggregate( wle2$wle$wle.jackse, list( wle2$wle$wle), mean )
colnames(a2) <- c("wle", "se.simple")
a2$se.testlet <- stats::aggregate( wle3$wle$wle.jackse, list( wle3$wle$wle), mean )[,2]
a2$se.strata <- stats::aggregate( wle4$wle$wle.jackse, list( wle4$wle$wle), mean )[,2]
a2$se.finitepop.strata <- stats::aggregate( wle5$wle$wle.jackse,
list( wle5$wle$wle), mean )[,2]
round( a2, 3 )
## > round( a2, 3 )
## wle se.simple se.testlet se.strata se.finitepop.strata
## 1 -5.085 0.440 0.649 0.331 0.138
## 2 -3.114 0.865 1.519 0.632 0.379
## 3 -2.585 0.790 0.849 0.751 0.495
## 4 -2.133 0.715 1.177 0.546 0.319
## 5 -1.721 0.597 0.767 0.527 0.317
## 6 -1.330 0.633 0.623 0.617 0.377
## 7 -0.942 0.631 0.643 0.604 0.365
## 8 -0.541 0.655 0.678 0.617 0.384
## 9 -0.104 0.671 0.646 0.659 0.434
## 10 0.406 0.771 0.706 0.751 0.461
## 11 1.080 1.118 0.893 1.076 0.630
## 12 2.332 0.400 0.631 0.272 0.195
Run the code above in your browser using DataLab