Learn R Programming

sirt (version 3.12-66)

xxirt: User Defined Item Response Model

Description

Estimates a user defined item response model. Both, item response functions and latent trait distributions can be specified by the user (see Details).

Usage

xxirt(dat, Theta=NULL, itemtype=NULL, customItems=NULL, partable=NULL,
       customTheta=NULL, group=NULL, weights=NULL, globconv=1e-06, conv=1e-04,
       maxit=1000, mstep_iter=4, mstep_reltol=1e-06, h=1E-4, use_grad=TRUE,
       verbose=TRUE, penalty_fun_item=NULL, verbose_index=NULL)

# S3 method for xxirt summary(object, digits=3, file=NULL, ...)

# S3 method for xxirt print(x, ...)

# S3 method for xxirt anova(object,...)

# S3 method for xxirt coef(object,...)

# S3 method for xxirt logLik(object,...)

# S3 method for xxirt vcov(object,...)

# S3 method for xxirt confint(object, parm, level=.95, ... )

# S3 method for xxirt IRT.expectedCounts(object,...)

# S3 method for xxirt IRT.factor.scores(object, type="EAP", ...)

# S3 method for xxirt IRT.irfprob(object,...)

# S3 method for xxirt IRT.likelihood(object,...)

# S3 method for xxirt IRT.posterior(object,...)

# S3 method for xxirt IRT.modelfit(object,...)

# S3 method for IRT.modelfit.xxirt summary(object,...)

# S3 method for xxirt IRT.se(object,...)

# computes Hessian matrix xxirt_hessian(object)

Value

List with following entries

partable

Item parameter table

par_items

Vector with estimated item parameters

par_items_summary

Data frame with item parameters

par_items_bounds

Data frame with summary on bounds of estimated item parameters

par_Theta

Vector with estimated parameters of theta distribution

Theta

Matrix with \(\bold{\theta}\) grid

probs_items

Item response functions

probs_Theta

Theta distribution

deviance

Deviance

loglik

Log likelihood value

ic

Information criteria

item_list

List with item functions

customItems

Used customized item response functions

customTheta

Used customized theta distribution

p.xi.aj

Individual likelihood

p.aj.xi

Individual posterior

ll_case

Case-wise log-likelihood values

n.ik

Array of expected counts

EAP

EAP person parameter estimates

dat

Used dataset with item responses

dat_resp

Dataset with response indicators

weights

Vector of person weights

G

Number of groups

group

Integer vector of group indicators

group_orig

Vector of original group_identifiers

ncat

Number of categories per item

converged

Logical whether model has converged

iter

Number of iterations needed

Arguments

dat

Data frame with item responses

Theta

Matrix with \(\bold{\theta}\) grid vector of latent trait

itemtype

Vector of item types

customItems

List containing types of item response functions created by xxirt_createDiscItem.

partable

Item parameter table which is initially created by xxirt_createParTable and which can be modified by xxirt_modifyParTable.

customTheta

User defined \(\bold{\theta}\) distribution created by xxirt_createThetaDistribution.

group

Optional vector of group indicators

weights

Optional vector of person weights

globconv

Convergence criterion for relative change in deviance

conv

Convergence criterion for absolute change in parameters

maxit

Maximum number of iterations

mstep_iter

Maximum number of iterations in M-step

mstep_reltol

Convergence criterion in M-step

h

Numerical differentiation parameter

use_grad

Logical indicating whether the gradient should be supplied to stats::optim

verbose

Logical indicating whether iteration progress should be displayed

penalty_fun_item

Optional penalty function used in regularized estimation

object

Object of class xxirt

digits

Number of digits to be rounded

file

Optional file name to which summary output is written

parm

Optional vector of parameters

level

Confidence level

verbose_index

Logical indicating whether item index should be printed in estimation output

x

Object of class xxirt

type

Type of person parameter estimate. Currently, only EAP is implemented.

...

Further arguments to be passed

Details

Item response functions can be specified as functions of unknown parameters \(\bold{\delta}_i\) such that \(P(X_{i}=x | \bold{\theta})=f_i( x | \bold{\theta} ; \bold{\delta}_i )\) The item response model is estimated under the assumption of local stochastic independence of items. Equality constraints of item parameters \(\bold{\delta}_i\) among items are allowed.

The probability distribution \(P(\bold{\theta})\) are specified as functions of an unknown parameter vector \(\bold{\gamma}\).

A penalty function for item parameters can be specified in penalty_fun_item. The penalty function should be differentiable and a non-differentiable function (e.g., the absolute value function) should be approximated by a differentiable function.

See Also

See the mirt::createItem and mirt::mirt functions in the mirt package for similar functionality.