#############################################################################
# EXAMPLE 1: Person fit Reading Data
#############################################################################
data(data.read)
dat <- data.read
# estimate Rasch model
mod <- sirt::rasch.mml2( dat )
# WLE
wle1 <- sirt::wle.rasch( dat,b=mod$item$b )$theta
b <- mod$item$b # item difficulty
# evaluate person fit
pf1 <- sirt::personfit.stat( dat=dat, abil=wle1, b=b)
if (FALSE) {
# dimensional analysis of person fit statistics
x0 <- stats::na.omit(pf1[, -c(1:3) ] )
stats::factanal( x=x0, factors=2, rotation="promax" )
## Loadings:
## Factor1 Factor2
## caution 0.914
## depend 0.293 0.750
## ECI1 0.869 0.160
## ECI2 0.869 0.162
## ECI3 1.011
## ECI4 1.159 -0.269
## ECI5 1.012
## ECI6 0.879 0.130
## l0 0.409 -1.255
## lz -0.504 -0.529
## outfit 0.297 0.702
## infit 0.362 0.695
## rpbis -1.014
## rpbis.itemdiff 1.032
## U3 0.735 0.309
##
## Factor Correlations:
## Factor1 Factor2
## Factor1 1.000 -0.727
## Factor2 -0.727 1.000
##
}
Run the code above in your browser using DataLab