# NOT RUN {
# --------------------------------------------------
# plotting estimates of linear models as forest plot
# --------------------------------------------------
# fit linear model
fit <- lm(airquality$Ozone ~ airquality$Wind + airquality$Temp + airquality$Solar.R)
# plot estimates with CI
sjp.lm(fit, grid.breaks = 2)
# plot estimates with CI
# and with narrower tick marks
# (because "grid.breaks" was not specified)
sjp.lm(fit)
# ---------------------------------------------------
# plotting regression line of linear model (done
# automatically if fitted model has only 1 predictor)
# ---------------------------------------------------
library(sjmisc)
data(efc)
# fit model
fit <- lm(neg_c_7 ~ quol_5, data=efc)
# plot regression line with label strings
sjp.lm(fit, resp.label = "Burden of care",
axis.labels = "Quality of life", show.loess = TRUE)
# --------------------------------------------------
# plotting regression lines of each single predictor
# of a fitted model
# --------------------------------------------------
library(sjmisc)
data(efc)
# fit model
fit <- lm(tot_sc_e ~ c12hour + e17age + e42dep, data=efc)
# reression line and scatter plot
sjp.lm(fit, type = "slope")
# reression line w/o scatter plot
sjp.lm(fit, type = "slope", show.scatter = FALSE)
# --------------------------
# plotting model assumptions
# --------------------------
sjp.lm(fit, type = "ma")
# }
# NOT RUN {
# --------------------------
# grouping estimates
# --------------------------
library(sjmisc)
data(efc)
fit <- lm(barthtot ~ c160age + e17age + c12hour + e16sex + c161sex + c172code,
data = efc)
# order estimates according to coefficient's order
sjp.lm(fit, group.estimates = c(1, 1, 2, 3, 3, 4),
geom.colors = c("green", "red", "blue", "grey"), sort.est = FALSE)
fit <- lm(barthtot ~ c160age + c12hour + e17age+ c161sex + c172code + e16sex,
data = efc)
# force order of estimates according to group assignment
sjp.lm(fit, group.estimates = c(1, 2, 1, 3, 4, 3),
geom.colors = c("green", "red", "blue", "grey"), sort.est = TRUE)
# --------------------------
# predicted values for response
# --------------------------
library(sjmisc)
data(efc)
efc$education <- to_label(to_factor(efc$c172code))
efc$gender <- to_label(to_factor(efc$c161sex))
fit <- lm(barthtot ~ c160age + c12hour + e17age + gender + education,
data = efc)
sjp.lm(fit, type = "pred", vars = "c160age")
# with loess
sjp.lm(fit, type = "pred", vars = "e17age", show.loess = TRUE)
# grouped
sjp.lm(fit, type = "pred", vars = c("c12hour", "education"))
# grouped, non-facet
sjp.lm(fit, type = "pred", vars = c("c12hour", "education"),
facet.grid = FALSE)
# two groupings
sjp.lm(fit, type = "pred", vars = c("c12hour", "gender", "education"))
# --------------------------
# plotting polynomial terms
# --------------------------
library(sjmisc)
data(efc)
# fit sample model
fit <- lm(tot_sc_e ~ c12hour + e17age + e42dep, data = efc)
# "e17age" does not seem to be linear correlated to response
# try to find appropiate polynomial. Grey line (loess smoothed)
# indicates best fit. Looks like x^3 has a good fit.
# (not checked for significance yet).
sjp.poly(fit, "e17age", 2:4, show.scatter = FALSE)
# fit new model
fit <- lm(tot_sc_e ~ c12hour + e42dep +
e17age + I(e17age^2) + I(e17age^3),
data = efc)
# plot marginal effects of polynomial term
sjp.lm(fit, type = "poly", poly.term = "e17age")
library(splines)
# fit new model with "splines"-package, "bs"
fit <- lm(tot_sc_e ~ c12hour + e42dep + bs(e17age, 3), data = efc)
# plot marginal effects of polynomial term, same call as above
sjp.lm(fit, type = "poly", poly.term = "e17age")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab