# NOT RUN {
library(lme4)
library(sjmisc)
data(efc)
# prepare group variable
efc$grp = as.factor(efc$e15relat)
levels(x = efc$grp) <- get_labels(efc$e15relat)
efc$care.level <- sjmisc::rec(efc$n4pstu,
rec = "0=0;1=1;2=2;3:4=3",
as.num = FALSE)
levels(x = efc$care.level) <- c("none", "I", "II", "III")
# data frame for fitted model
mydf <- data.frame(neg_c_7 = efc$neg_c_7,
sex = efc$c161sex,
c12hour = efc$c12hour,
barthel = efc$barthtot,
education = to_factor(efc$c172code),
grp = efc$grp,
carelevel = efc$care.level)
# fit three sample models
fit1 <- lmer(neg_c_7 ~ sex + c12hour + barthel + (1|grp), data = mydf)
fit2 <- lmer(neg_c_7 ~ sex + c12hour + education + barthel + (1|grp), data = mydf)
fit3 <- lmer(neg_c_7 ~ sex + c12hour + education + barthel +
(1|grp) + (1|carelevel), data = mydf)
# print summary table... automatic grouping does not work here,
# barthel-index is printed as category of education (values are
# correct, however, indentation is wrong)
sjt.lmer(fit1, fit2, ci.hyphen = " to ", group.pred = TRUE)
# either change order of models
sjt.lmer(fit2, fit1, group.pred = TRUE)
# or turn off automatic grouping of categorical predictors
sjt.lmer(fit1, fit2, group.pred = FALSE)
# print table, using vector names as labels
sjt.lmer(fit1, fit2, fit3, pred.labels = "")
# show other statistics
sjt.lmer(fit1, fit2, show.aic = TRUE, show.ci = FALSE,
show.se = TRUE, p.numeric = FALSE)
sjt.lmer(fit1, fit2, fit3, show.aic = TRUE,
separate.ci.col = FALSE, newline.ci = FALSE)
# user defined predictor labels
sjt.lmer(fit1, fit2, fit3, pred.labels = c("Elder's gender (female)",
"Hours of care per week", "Barthel Index", "Educational level (mid)",
"Educational level (high)"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab