data(efc)
table(efc$e42dep, useNA = "always")
# replace NA with 5
table(rec(efc$e42dep, rec = "1=1;2=2;3=3;4=4;NA=5"), useNA = "always")
# recode 1 to 2 into 1 and 3 to 4 into 2
table(rec(efc$e42dep, rec = "1,2=1; 3,4=2"), useNA = "always")
# keep value labels. variable label is automatically preserved
library(dplyr)
efc %>%
select(e42dep) %>%
rec(rec = "1,2=1; 3,4=2",
val.labels = c("low dependency", "high dependency")) %>%
frq()
# works with mutate
efc %>%
select(e42dep, e17age) %>%
mutate(dependency_rev = rec(e42dep, rec = "rev")) %>%
head()
# recode 1 to 3 into 1 and 4 into 2
table(rec(efc$e42dep, rec = "min:3=1; 4=2"), useNA = "always")
# recode 2 to 1 and all others into 2
table(rec(efc$e42dep, rec = "2=1; else=2"), useNA = "always")
# reverse value order
table(rec(efc$e42dep, rec = "rev"), useNA = "always")
# recode only selected values, copy remaining
table(efc$e15relat)
table(rec(efc$e15relat, rec = "1,2,4=1; else=copy"))
# recode variables with same category in a data frame
head(efc[, 6:9])
head(rec(efc[, 6:9], rec = "1=10;2=20;3=30;4=40"))
# recode multiple variables and set value labels via recode-syntax
dummy <- rec(
efc, c160age, e17age,
rec = "15:30=1 [young]; 31:55=2 [middle]; 56:max=3 [old]",
append = FALSE
)
frq(dummy)
# recode variables with same value-range
lapply(
rec(
efc, c82cop1, c83cop2, c84cop3,
rec = "1,2=1; NA=9; else=copy",
append = FALSE
),
table,
useNA = "always"
)
# recode character vector
dummy <- c("M", "F", "F", "X")
rec(dummy, rec = "M=Male; F=Female; X=Refused")
# recode numeric to character
rec(efc$e42dep, rec = "1=first;2=2nd;3=third;else=hi") %>% head()
# recode non-numeric factors
data(iris)
table(rec(iris, Species, rec = "setosa=huhu; else=copy", append = FALSE))
# recode floating points
table(rec(
iris, Sepal.Length, rec = "lo:5=1;5.01:6.5=2;6.501:max=3", append = FALSE
))
# preserve tagged NAs
if (require("haven")) {
x <- labelled(c(1:3, tagged_na("a", "c", "z"), 4:1),
c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),
"Refused" = tagged_na("a"), "Not home" = tagged_na("z")))
# get current value labels
x
# recode 2 into 5; Values of tagged NAs are preserved
rec(x, rec = "2=5;else=copy")
}
# use select-helpers from dplyr-package
out <- rec(
efc, contains("cop"), c161sex:c175empl,
rec = "0,1=0; else=1",
append = FALSE
)
head(out)
# recode only variables that have a value range from 1-4
p <- function(x) min(x, na.rm = TRUE) > 0 && max(x, na.rm = TRUE) < 5
out <- rec_if(efc, predicate = p, rec = "1:3=1;4=2;else=copy")
head(out)
Run the code above in your browser using DataLab