# NOT RUN {
if (require("dplyr") && require("tidyr") && require("purrr")) {
data(efc)
# create nested data frame, grouped by dependency (e42dep)
# and fit linear model for each group. These models are
# stored in the list variable "models".
model.data <- efc %>%
filter(!is.na(e42dep)) %>%
group_by(e42dep) %>%
nest() %>%
mutate(
models = map(data, ~lm(neg_c_7 ~ c12hour + c172code, data = .x))
)
# spread coefficients, so we can easily access and compare the
# coefficients over all models. arguments `se` and `p.val` default
# to `FALSE`, when `model.term` is not specified
spread_coef(model.data, models)
spread_coef(model.data, models, se = TRUE)
# select only specific model term. `se` and `p.val` default to `TRUE`
spread_coef(model.data, models, c12hour)
# spread_coef can be used directly within a pipe-chain
efc %>%
filter(!is.na(e42dep)) %>%
group_by(e42dep) %>%
nest() %>%
mutate(
models = map(data, ~lm(neg_c_7 ~ c12hour + c172code, data = .x))
) %>%
spread_coef(models)
# spread_coef() makes it easy to generate bootstrapped
# confidence intervals, using the 'bootstrap()' and 'boot_ci()'
# functions from the 'sjstats' package, which creates nested
# data frames of bootstrap replicates
if (require("sjstats")) {
efc %>%
# generate bootstrap replicates
bootstrap(100) %>%
# apply lm to all bootstrapped data sets
mutate(
models = map(strap, ~lm(neg_c_7 ~ e42dep + c161sex + c172code, data = .x))
) %>%
# spread model coefficient for all 100 models
spread_coef(models, se = FALSE, p.val = FALSE) %>%
# compute the CI for all bootstrapped model coefficients
boot_ci(e42dep, c161sex, c172code)
}
}
# }
Run the code above in your browser using DataLab