Learn R Programming

skatMeta (version 1.4.3)

skatExample: example Data for illustrating skatMeta

Description

Contains simulated data for two cohorts. See the example for the exact code used to generate the data.

Usage

data(skatExample)

Arguments

Examples

Run this code
#Data generated by
set.seed(20)
n <- 600 #observations per cohort
d <- 2000 #SNPs
k <- 100 #genes

##### First cohort of unrelated individuals:
Z1 <- replicate(d,rbinom(n,2,rbeta((n),3,200)))

## assign SNP id's to the columns 
colnames(Z1) <- sample(d+50,d) + 1e6

pheno1 <-  data.frame("y" = rnorm(n), "sex"=rep(1:2,(n/2)), "bmi"=rnorm(n,25,2),
	"ybin" = rbinom(n,1,.5), "time"=rpois(n,5), "status"=rbinom(n,1,.9))

genes <- paste0("gene",1:k)
SNPInfo <- data.frame("Name" =1:(d+50) + 1e6, "gene" = sort(sample(genes,d+50,replace=T)))

#####Second cohort of family data:
# 150 families of size 4
require(kinship2)
fullped<-data.frame(famid=rep(1:(n/4),each=4),id=10001:(10000+n),fa=rep(0,n),mo=rep(0,n))
fullped$fa[(1:(n/4))*4-1]<-fullped$fa[(1:(n/4))*4]<-(1:(n/4))*4+9997
fullped$mo[(1:(n/4))*4-1]<-fullped$mo[(1:(n/4))*4]<-(1:(n/4))*4+9998
kins = makekinship(fullped$famid, fullped$id, fullped$fa, fullped$mo)

## generate a phenotype with 20% `heritability': 
pheno2<-data.frame("id"=10001:(10000+n),"y"=t(rnorm(n)%*%chol(0.2*2*as.matrix(kins) + 
	0.8*diag(n))),"sex"=rep(1:2,(n/2)),"bmi"=rnorm(n,25,2))

Z2 <- replicate(d,rbinom(n,2,rbeta((n/4),3,200)[fullped$famid]))
colnames(Z2) <- sample(d+50,d) + 1e6

Run the code above in your browser using DataLab