# NOT RUN {
skim(iris)
# Use tidyselect
skim(iris, Species)
skim(iris, starts_with("Sepal"))
# Skim also works groupwise
dplyr::group_by(iris, Species) %>% skim()
# Skim pipelines; now we work with the tall format
skim(iris) %>% as.data.frame()
skim(iris) %>% dplyr::filter(type == "factor")
# Which column as the greatest mean value?
skim(iris) %>%
dplyr::filter(stat == "mean") %>%
dplyr::arrange(dplyr::desc(value))
# Use skim_tee to view the skim results and
# continue using the original data.
chickwts %>% skim_tee() %>% dplyr::filter(feed == "sunflower")
# }
Run the code above in your browser using DataLab