
These functions are used to set the default skimming functions for a data
type. They are combined with the base skim function list (sfl
) in
skim_with()
, to create the summary tibble for each type.
get_skimmers(column)# S3 method for default
get_skimmers(column)
# S3 method for numeric
get_skimmers(column)
# S3 method for factor
get_skimmers(column)
# S3 method for character
get_skimmers(column)
# S3 method for logical
get_skimmers(column)
# S3 method for complex
get_skimmers(column)
# S3 method for Date
get_skimmers(column)
# S3 method for POSIXct
get_skimmers(column)
# S3 method for difftime
get_skimmers(column)
# S3 method for Timespan
get_skimmers(column)
# S3 method for ts
get_skimmers(column)
# S3 method for list
get_skimmers(column)
# S3 method for AsIs
get_skimmers(column)
# S3 method for haven_labelled
get_skimmers(column)
modify_default_skimmers(skim_type, new_skim_type = NULL, new_funs = list())
A skim_function_list
object.
An atomic vector or list. A column from a data frame.
A character scalar. The class of the object with default skimmers.
The type to assign to the looked up set of skimmers.
Replacement functions for those in
get_skimmers(default)
: The default method for skimming data. Only used when
a column's data type doesn't match currently installed types. Call
get_default_skimmer_names to see these defaults.
get_skimmers(numeric)
: Summary functions for numeric columns, covering both
double()
and integer()
classes: mean()
, sd()
, quantile()
and
inline_hist()
.
get_skimmers(factor)
: Summary functions for factor columns:
is.ordered()
, n_unique()
and top_counts()
.
get_skimmers(character)
: Summary functions for character columns. Also, the
default for unknown columns: min_char()
, max_char()
, n_empty()
,
n_unique()
and n_whitespace()
.
get_skimmers(logical)
: Summary functions for logical/ boolean columns:
mean()
, which produces rates for each value, and top_counts()
.
get_skimmers(complex)
: Summary functions for complex columns: mean()
.
get_skimmers(Date)
: Summary functions for Date
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(POSIXct)
: Summary functions for POSIXct
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(difftime)
: Summary functions for difftime
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(Timespan)
: Summary functions for Timespan
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(ts)
: Summary functions for ts
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(list)
: Summary functions for list
columns: n_unique()
,
list_min_length()
and list_max_length()
.
get_skimmers(AsIs)
: Summary functions for AsIs
columns: n_unique()
,
list_min_length()
and list_max_length()
.
get_skimmers(haven_labelled)
: Summary functions for haven_labelled
columns.
Finds the appropriate skimmers for the underlying data in the vector.
When creating your own set of skimming functions, call sfl()
within a
get_skimmers()
method for your particular type. Your call to sfl()
should
also provide a matching class in the skim_type
argument. Otherwise, it
will not be possible to dynamically reassign your default functions when
working interactively.
Call get_default_skimmers()
to see the functions for each type of summary
function currently supported. Call get_default_skimmer_names()
to just see
the names of these functions. Use modify_default_skimmers()
for a method
for changing the skim_type
or functions for a default sfl
. This is useful
for creating new default sfl
's.
sfl()
# Defining default skimming functions for a new class, `my_class`.
# Note that the class argument is required for dynamic reassignment.
get_skimmers.my_class <- function(column) {
sfl(
skim_type = "my_class",
mean,
sd
)
}
# Integer and double columns are both "numeric" and are treated the same
# by default. To switch this behavior in another package, add a method.
get_skimmers.integer <- function(column) {
sfl(
skim_type = "integer",
p50 = ~ stats::quantile(
.,
probs = .50, na.rm = TRUE, names = FALSE, type = 1
)
)
}
x <- mtcars[c("gear", "carb")]
class(x$carb) <- "integer"
skim(x)
if (FALSE) {
# In a package, to revert to the V1 behavior of skimming separately with the
# same functions, assign the numeric `get_skimmers`.
get_skimmers.integer <- skimr::get_skimmers.numeric
# Or, in a local session, use `skim_with` to create a different `skim`.
new_skim <- skim_with(integer = skimr::get_skimmers.numeric())
# To apply a set of skimmers from an old type to a new type
get_skimmers.new_type <- function(column) {
modify_default_skimmers("old_type", new_skim_type = "new_type")
}
}
Run the code above in your browser using DataLab