TCA(x, K, para, method = "kendall", algorithm = "tp", max.iter = 200, verbose = TRUE, eps.conv = 0.001)n by d data matrix or d by d covariance matrix from the input  
pearson, ns, npn, spearman 
   and kendall. kendall as default. 
sp, spca and pmd. tp as default.  
verbose = FALSE, tracing information printing is disabled. The default value
is TRUE.
cov.input=TRUE. 
ns, npn, spearman and kendall to approximate the correlation matrix.
Details are refered to Han,F. and Liu,H. (2012). Three sparse PCA algorithms are used: truncated power (Yuan, X. and Zhang, T. (2011)),
spca(Zou,H., Hastie, T., and Tibshirani, R. (2006)) and pmd (Witten, D., Tibshirani, R., and Hastie, T. (2009)). 
x=matrix(rnorm(20000),100)
fit=TCA(x,K=6, para=c(10,10,10,5,5,5))
fit
plot(fit)
Run the code above in your browser using DataLab