Learn R Programming

smooth (version 2.4.1)

Accuracy: Accuracy of forecasts

Description

Function calculates several error measures using the provided data.

Usage

Accuracy(holdout, forecast, actual, digits = 3)

Arguments

holdout

The vector of the holdout values.

forecast

The vector of forecasts produced by a model.

actual

The vector of actual in-sample values.

digits

Number of digits of the output.

Value

The functions returns the named vector of errors:

  • MPE,

  • cbias,

  • MAPE,

  • SMAPE,

  • MASE,

  • sMAE,

  • RelMAE,

  • sMSE,

  • sPIS,

  • sCE.

For the details on these errors, see Errors.

References

  • Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8, pp.81-98.

  • Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, pp.679-688.

  • Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting, 9, pp.527-529.

  • Petropoulos F., Kourentzes N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66, pp.914-924.

  • Wallstrom P., Segerstedt A. (2010). Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128, pp.625-636.

Examples

Run this code
# NOT RUN {

y <- rnorm(100,10,2)
esmodel <- es(y[1:90],model="ANN",h=10)

Accuracy(y[91:100],esmodel$forecast,y[1:90],digits=5)

# }

Run the code above in your browser using DataLab