Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD, this
function provides Pickands' estimator of the shape parameter \(\gamma \in [-1,0]\).
Precisely, for \(k=4, \ldots, n\)
$$\hat \gamma^k_{\rm{Pick}} = \frac{1}{\log 2} \log \Bigl(\frac{H^{-1}((n-r_k(H)+1)/n)-H^{-1}((n-2r_k(H) +1)/n)}{H^{-1}((n-2r_k(H) +1)/n)-H^{-1}((n-4r_k(H)+1)/n)} \Bigr)$$
for $H$ either the empirical or the distribution function \(\hat F_n\) based on the log--concave density
estimator and
$$r_k(H) = \lfloor k/4 \rfloor$$
if \(H\) is the empirical distribution function and
$$r_k(H) = k / 4$$
if \(H = \hat F_n\).