#Create some random graphs
g<-rgraph(10,20,tprob=c(rbeta(10,15,2),rbeta(10,2,15)))
#Find the Hamming distances between them
g.h<-hdist(g)
#Cluster the graphs via their Hamming distances
g.c<-hclust(as.dist(g.h))
#Now find central graphs by cluster for a two cluster solution
g.cg<-gclust.centralgraph(g.c,2,g)
#Plot the central graphs
gplot(g.cg[1,,])
gplot(g.cg[2,,])
Run the code above in your browser using DataLab