Learn R Programming

soc.ca (version 0.8.0)

directors: Directors dataset

Description

Prosopographical data on the top 100 CEO's from the 82 largest Danish corporations.

Arguments

Details

The directors dataset is prosopographical data collected from a wide array of sources on biographic and corporate information. Sources include the Danish variant of Who's Who (Blaa Bog), a private business information database (Greens Erhvervsinformation), journalistic portrait articles, article search engines, bibliographic databases and financial reports. CEOs from 82 corporations were selected according to their position as CEO in December 2007. 18 executives are included on other criteria, taking into account the magnitude of the corporations and issues regarding ownership and control, resulting in a final population of 100 CEOs. The 82 corporations have formal ownership and management located in Denmark and were selected through either financial capital, measured as having a turnover of over five billion DKK (650 million Eur.), or organizational capital, defined as having at least 5000 employees; 34 corporations were included on both criteria, 45 on financial capital and three on organizational capital alone. To avoid including investors, rather than executives, a minimum of 500 employees was also required, excluding 12 firms. Companies acting only as subsidiaries were also excluded. Data is for public use and no author permission is needed, but we would love to hear from you if you find the data useful. The following example is based on the analysis from the article: "A Very Economic Elite: The Case of the Danish Top CEOs".

References

Ellersgaard, Christoph, Anton Grau Larsen, og Martin D. Munk. 2012. "A Very Economic Elite: The Case of the Danish Top CEOs". Sociology.

Ellersgaard, Christoph Houman, og Anton Grau Larsen. 2010. "Firmaets Maend". Master Thesis, Copenhagen: University of Copenhagen.

Ellersgaard, Christoph Houman, og Anton Grau Larsen. 2011. "Kulturel kapital blandt topdirektoerer i Danmark - En domineret kapitalform?" Dansk Sociologi 22(3):9-29.

Larsen, Anton Grau, og Christoph Houman Ellersgaard. 2012. "Status og integration paa magtens felt for danske topdirektoerer". Praktiske Grunde. Nordisk tidsskrift for kultur- og samfundsvidenskab 2012(2-3).

Examples

Run this code
# NOT RUN {
data(directors)
attach(directors)


active      <- data.frame(careerprofile_maclean_cat, careerfoundation_maclean_cat,
                          years_between_edu_dir_cat, time_in_corp_before_ceo_cat,
                          age_as_ceo_cat, career_changes_cat2, mba, abroad, hd, phd,
                          education, author, placeofbirth, familyclass_bourdieu,
                          partnersfamily_in_whoswho, family_in_whoswho)

sup       	<- data.frame(size_prestige, ownership_cat_2, sector, location)

id          <- navn

options(passive = c("MISSING", "Missing", "Irrelevant", "residence_value_cat2: Udlandet"))

result      <- soc.mca(active, sup, id)

result

# Contribution
contribution(result, 1)
contribution(result, 2)
contribution(result, 3)
contribution(result, 1, all = TRUE)
contribution(result, 1, indices = TRUE)
contribution(result, 1, mode = "mod")
contribution(result, mode = "variable")

# Individuals
contribution(result, 1, mode = "ind")
contribution(result, 2, mode = "ind")


# Table of variance
variance(result)

# Invert
result      <- invert(result, c(1, 2, 3))

# Export and assign label
# export.label(result)

# result      <- assign.label(result,
#  file = "https://raw.github.com/Rsoc/soc.ca/master/extra/director_labels.csv")



# Add.n
result      <- add.to.label(result)
contribution(result, 2)


# The result object or "soc.ca" object
str(result)
dim1 <- result$coord.ind[, 1]
qplot(dim1)

# Quadrant
quad      <- create.quadrant(result)
table(quad)
quad      <- create.quadrant(result, cut.min = 0, cut.max = 0)
table(quad)


# Map of individuals
map.ind(result)
map.ind(result, dim = c(2, 1), label = TRUE)
map.ind(result, dim = c(2, 1), point.size = 3, point.shape = 2)
map.ind(result, dim = c(2, 1), map.title = "The top 100 Danish CEO's",
point.color = quad)
# Map of the individuals colored by contribution
map.ind(result, point.color = result$ctr.ind[, 1],
 point.shape = 18) + scale_color_continuous(low = "white", high = "red")


# Map of contributing modalities
map.ctr(result, dim = c(2, 1))
map.ctr(result, dim = c(2, 1), ctr.dim = 2)
map.ctr(result, point.size = 3)

map.active(result, dim = c(2, 1))
map.sup(result, dim = c(2, 1))

# Plot.list

# Selecting specific active modalities
select      <- c("Career start: Corporation (n:57)", "No Phd (n:92)")
boo.select  <- match(select, result$names.mod)
map.select(result, list.mod = boo.select)

highcor     <- which(result$cor.mod[, 1] >= 0.2)
map.select(result, list.mod = highcor)

# Selecting specific supplementary modalities

highdim3    <- which(sqrt(result$coord.sup[, 3]^2) >= 0.5)
map.select(result, list.sup = highdim3)

# Selecting specific individuals based on a certain criteria

forfatter   <- author == "Forfatter"
map.select(result, list.ind = forfatter)

# Combining it all
map.select(result, list.mod = highcor, list.sup = highdim3, list.ind = forfatter)

# Add points to an existing plot
ctrplot     <- map.ctr(result, ctr.dim = 1, point.color = "red")
map.add(result, ctrplot, data.type = "ctr", ctr.dim = 2, point.color = "blue")

# Using the list option in add.points
forfatter    <- author == "Forfatter"
map.add(result, ctrplot, data.type = "select", list.ind = forfatter, colour = "purple")

# Using the list option in add.points to add labels to only a part of the cloud of individuals
forfatter     <- author == "Forfatter"
notforfatter  <- author != "Forfatter"
map.forfatter <- map.select(result, list.ind = notforfatter, label = FALSE)
map.forfatter
map.forfatter <- map.add(result, map.forfatter, data.type = "select", list.ind = forfatter)
map.forfatter

# Plotting all the modalities of one individual
result2       <- soc.ca(active, sup, id)
individual    <- which(id == "Lars Larsen")
ind.mat       <- indicator(active)
modalities    <- names(which(ind.mat[individual, ] == 1))
mod.ind       <- match(modalities, result2$names.mod)

lars          <- map.select(result2, list.mod = mod.ind)
map.add(result2, lars, data.type = "select", list.ind = individual, colour = "red")

# Adding concentration ellipses to an existing plot
el.forfatter  <- map.ellipse(result, map.forfatter, author)
el.forfatter
# }

Run the code above in your browser using DataLab